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Abstract

Gradient descent is a fundamental optimization algorithm commonly used in machine
learning and deep learning to minimize objective functions. Despite its simplicity,
understanding its convergence behaviour in different optimization landscapes remains
critical for ensuring efficient and stable training of models. This study examines the
theoretical and practical convergence properties of gradient descent in convex, strongly
convex, and non-convex scenarios. The aim was to analyse how factors such as function
smoothness, step size, and algorithmic variants affect convergence to minima or
stationary points. We used both theoretical proofs and numerical experiments to assess
performance. Convergence proofs were presented for convex and smooth functions,
demonstrating sub-linear convergence for gradient descent, and for strongly convex
functions, showing linear convergence. In non-convex settings, we showed that the
gradient descent converges to stationary points under standard assumptions, supported
by theoretical guarantees. To validate these results, we apply gradient descent,
conjugate gradient, and an Adaptive Modified Gradient-Type (AMGT) method to
optimize convex and bivariate quadratic functions. Our simulations indicated that while
standard gradient descent ensured stable but slower convergence, conjugate gradient
methods offered faster descent in convex quadratic problems. AMGT demonstrated
improved convergence speed with appropriate tuning but diverged with excessively
high learning rates, highlighting the importance of hyperparameter sensitivity. In
conclusion, the study confirms that the convergence behaviour of gradient-based
methods depends significantly on problem structure and learning rate selection. For
convex problems, using fixed learning rates below the inverse of the Lipschitz constant
ensures convergence. In non-convex domains, adaptive methods such as Adam and
learning rate scheduling can improve performance, especially in deep learning
applications. We recommend careful step size tuning and method selection based on
problem characteristics to balance convergence speed and stability in practical
applications.

Keywords: gradient descent, convergence analysis, convex optimization, non-convex
functions, learning rate, conjugate gradient method, adaptive optimization, deep
learning
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I. INTRODUCTION

The gradient descent algorithm has its roots in classical optimization theory,
tracing back to the 19th century. The concept of a gradient-based optimization
method was formally introduced by Augustin-Louis Cauchy in 1847, who
proposed the method of steepest descent as a numerical tool for solving systems
of equations, laying the groundwork for modern iterative function minimization.
Throughout the 20th century, gradient-based methods saw further advancements
in numerical analysis, convex optimization, and control theory. Notably,
Marquardt (1963) made significant contributions by introducing the Levenberg-
Marquardt algorithm, which greatly enhanced optimization in nonlinear least-
squares problems.

Gradient descent gained prominence in the realm of machine learning with the
emergence of artificial neural networks. One of its early applications was in the
perceptron model devised by Frank Rosenblatt in 1958. However, the
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perceptron's limitation to solving linearly separable problems led to a temporary
decline in interest. The 1980s saw a resurgence of interest in neural networks
with the introduction of the back propagation algorithm by Rumelhart, Hinton,
and Williams (1986). This breakthrough utilized stochastic gradient descent
(SGD) to efficiently train multi-layer perceptrons, driving significant
advancements in supervised learning tasks.

The 2010s marked a period of rapid progress in deep learning, where deep
neural networks achieved cutting-edge results in areas like image recognition
(Krizhevskyet al., 2012), natural language processing (Vaswani et al., 2017),
and reinforcement learning (Silver et al., 2016). These successes heightened
interest in understanding and enhancing the convergence behavior of gradient
descent, particularly in the face of the complex, non-convex landscapes
prevalent in deep learning.

More recently, Laisin and Adigwe (2025) delved into the convergence behavior
of the Adaptive Modified Gradient Technique (AMGT) in their study
"Implementation and Comparative Analysis of AMGT Method in Maple 24:
Convergence Performance in Optimization Problems.” Their analysis offered
comparative insights into the sensitivity and efficiency of gradient-based
methods across various optimization scenarios. Expanding on this research,
Laisin et al. (2024) explored the construction of rational polyhedra on an nxn
board, introducing structural considerations relevant to integral polyhedral
optimization. Their work provides valuable geometric insights applicable to
studying constraint structures in optimization problems.In a related study, Laisin
et al. (2025) investigated boundedness and solution size in rational linear
programming and polyhedral optimization. This research lays theoretical
foundations that shed light on the behavior of gradient-based methods,
especially in constrained optimization scenarios involving rational polyhedra.
Furthermore, Laisin and Edike (2025) tackled the construction of simplex linear
integer programming problems with application, exploring differentiated
solution techniques suitable for discrete optimization challenges. These
constructions serve as a link between integer programming formulations and
continuous optimization methods like gradient descent.

Collectively, these contributions highlight the evolving significance of gradient
descent not only in contemporary machine learning but also in classical and
discrete optimization domains. This paper builds on these advancements by
examining the convergence properties of gradient descent across convex,
polyhedral, and deep learning contexts, with a focus on how structural
characteristics—such as rational constraints and problem boundedness—affect
the efficacy and efficiency of gradient-based approaches.
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I1. Preliminaries and Definitions

To address challenges in optimization, researchers have introduced advanced
techniques:

e Momentum-based methods: Nesterov (1983) introduced momentum-
based methods to accelerate convergence by incorporating previous
gradients.

o Adaptive learning rate methods: Kingma and Ba (2014) proposed Adam,
an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order
moments. arxiv.org

o Second-order methods: Amari (1998) developed natural gradient
descent, which considers the geometry of the parameter space by using
the Fisher information matrix.
researchgate.net+2dl.acm.org+2researchgate.net+2

These methods have significantly influenced the study of gradient descent
convergence.

Definitions:
Definition 2.1: Convexity and Smoothness

For many optimization problems, particularly in classical machine learning, the
loss function is convex. A function f(8) is convex if:

f6; + (1 —-2A)0,) < Af(6,) + (1 - Df(82), VAE[O]1].
If a function is strongly convex, gradient descent is guaranteed to converge
linearly to the global optimum (Nesterov, 2004).
Definition 2.2: Lipschitz Continuity of Gradients

The gradient V£ (0) is assumed to be L-Lipschitz continuous, meaning that the
function’'s rate of change is bounded:

NVf(O)—Vf@)Il < LB —06,I

This condition ensures that the optimization process does not behave erratically
(Laisin and Adigwe, 2025).

Definition 2.3: Non-Convex Settings and Stationary Points

In deep learning, loss functions are typically non-convex, which means gradient
descent is not guaranteed to reach a global minimum. However, it has been
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shown that gradient descent still converges to a stationary point (a point where
Vf(@) =0 (Geetal., 2015).

Definition 2.4: Factors Influencing the Study of Gradient Descent Convergence

2.4.1 Advances in Mathematical Optimization: Theoretical advancements in
convex analysis and optimization algorithms have shaped modern gradient
descent studies (Nemirovski & Yudin, 1983).

2.4.2 Computing Power and Scalability:The availability of GPUs and TPUs has
allowed for large-scale experiments, influencing research into adaptive
optimization methods.

2.4.3 Practical Performance in Deep Learning: The empirical success of
methods like Adam led to studies on their theoretical properties and limitations
(Reddiet al., 2018).

Definition 2.5: Circumstances Leading to the Study of Gradient Descent in
Deep Learning

Several developments in deep learning motivated the need for studying gradient
descent convergence:

2.5.1 Large-Scale Datasets and High-Dimensional Optimization:Modern deep
learning models are trained on massive datasets (e.g., Image Net), requiring
optimization techniques that scale efficiently.

2.5.2 Non-Convexity and the Challenge of Local Minima:Theoretical studies
suggested that neural network loss functions contain many saddle points rather
than local minima, making convergence analysis crucial (Choromanska et al.,
2015).

2.5.3 Batch vs. Stochastic Optimization: Stochastic gradient descent (SGD)
became the dominant optimization method, requiring research into stochastic
convergence properties (Bottou, 2010).

Definition 2.6:
2.6.1 Convex combination:

Given vectorsxy, x,, ..... X, IN a vector space, a convex combination is any
vector of the form:

n
Z/llxl == /hxl + /’1.2x2 + -+ Anxn

=1

where each 4; = 0, and
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n
Z}{i = 1
i=1

2.6.2 Convex Set:

A set is called convex if, for any two points within the set, the line segment
connecting them lies entirely within the set. In other words, a set is convex if the
convex combination of any two points in the set also belongs to the set.

— P
Q
P/
R
A B C D

Q

A and B are convex sets, but C and D are non-convex sets.
2.6.3 Extreme Point of a Convex Set:

A point x in a convex set C is called an extreme point if it cannot be written as a
convex combination of two distinct points x; and x, in C. That is, if

x=Ax;+ (1 —=Dxfor0<A1<1
then it must be that x; = x, = x.

Note: Every extreme point of a convex set lies on its boundary. However, not
every boundary point of a convex set is necessarily an extreme point.

2.6.4 Convex Hull:

The convex hull of a set X, denoted as conv(X), is the smallest convex set that
contains X. Equivalently, it is the set of all convex combinations of points in X.

2.6.5 Convex Function:

A function f(x) is said to be strictly convex if, for any two distinct points x;
and x,, and for all 2 € (0,1), the following inequality holds:
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fQx: + (A =Dxp) <Af(x1) + (1= Df(x2)

This means the graph of f(x) lies strictly below the straight line connecting any
two points on the graph.However, a function f(x) is strictly concave if—f(x) is
strictly convex.

2.6.6 Convex Polyhedron:

A convex polyhedron is the set of all convex combinations of a finite number of
points. In other words, it is the convex hull of a finite set of points, and
represents a bounded or unbounded convex region formed by these points
(Laisin et al., 2024).

Theorem 1: A hyper-plane is a convex set.

Proof:
Consider a hyper-plane defined by

X={x€R"|cTx =2z}
Let x; and x, be any two points in the hyper-planeX. Then:
c’x,=zandcTx, =z
Now, consider any convex combination of x; and x:
X3 = Ax; + (1 — ADxy, vo<i<1
Then,
Ty =T, + (1 —=DcTx, =2, + (1 —Dx, =z

This implies that x; € X. Since any convex combination of points in X also lies
inX, by definition, the hyper-plane X is a convex set.

QED
Theorem 2:
The intersection of two convex sets is also a convex set.

Proof:
Let X; and X, be two convex sets, and let

X3 = X1 n X2
Take any two points x4, x, € X. By definition of intersection :

X1,%X, € Xjand x4, x5, € X,
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Since both X; and X, are convex, forany 0 < 1 < 1:
Ay +(1—Dx, €Xyand Ax; + (1 — Dx, € X,
Therefore,
A+ (A -=Dx, €XiNX, =X3
Thus, by definition, X5 is a convex set.
QED
I11. Main Results and Discussions
3.1. Convergence of Gradient Descent for Convex and Smooth Functions:

Gradient descent is a fundamental algorithm in optimization, widely used in
both classical convex optimization and modern machine learning, particularly
deep learning. When the objective (or loss) function f(8) is convex and smooth,
and the learning rate a is chosen appropriately, gradient descent can be shown to
converge to a global minimum.

Gradient Descent Update Rule:
Ot+1 =0 —aVf(6,)

If £(6;) is L-smooth; that is, its gradient is Lipschitz continuous with constant
L, then for a step size 0 < s% , gradient descent guarantees a monotonic
decrease in the objective function:

f(Bea) < (8 =5 N TF(O0) I?
This inequality ensures that each update decreases the function value, thereby
guiding the optimization towards a minimizer.
Assumptions:
To rigorously analyze convergence, we assume:

1. Convexity:
A function £(0) is convex if for all 8,8’ € R¢:

f(8)=f(O)+Vf(OIT(O —0)
2. L-smoothness (Gradient Lipschitz Continuity):

There exists L > 0 such that for all 6, 6':
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NVf(@)—VFOHYISLIO—-6"I

Equivalently, for any 6, 8, we have:
! ! L ! 2
f@) < FO) +VFOTE ~0) +210' =0

Proof of Convergence for Smooth Convex Functions

Using the update rule
Or+1 =6 —aVf(6,)

and the smoothness property, we obtain:

FBa) < F8) =5 I VFB) 124516~ I

La?
=f(0,) —all Vi) I*+ — | VF6) I?

= 7@~ (a= 5 ) uvr@o v

2
To ensure that the term (a—%) is positive (hence ensuring descent), it
suffices to choose

0<a <§. For stability and simplicity, a common choice is a <=, which

1
L

yields:
FO) S F(6) +TFO) (@ ~6) 4216 —6 I

This guarantees a monotonic decrease in the function value at each step.
Convergence for Strongly Convex Functions:

If, in addition to being smooth and convex, the function f is u-strongly convex
(with u > 0), then gradient descent enjoys a faster, linear convergence rate. A
function £ is strongly convex if:

£(6) = () +Vf(O)(6' - 6) +§ 10" —0 |2

Under this condition, we can derive a strong inequality that relates the gradient
norm to the sub-optimality:

IV Il 2 2 2u(f(6e) — f(87))
Plugging this into our earlier descent bound:
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£, < f(et)—% I VF(6,) I

< f(60) —au(f(6,) — f(67))
<A —aw)f(6) - f(67)

This gives:

f(6) —f(6") = (1 —aw)f(6) — f(67)

Which shows geometric (linear) convergence to the unique minimizer 6%,
provided that

1
O<ac<-
L

Comparative Discussion and Practical Relevance:

The rate of convergence depends crucially on the structure of the function being
optimized:

e For general convex and L-smooth functions, gradient descent has a sub-
linear convergence rate of 0(1/t).
e In case of strongly convex functions, the convergence rate becomes
linear, at O((1 — au)!),leading to exponential acceleration (Nesterov,
2004).
This distinction is crucial in the context of large-scale machine learning
applications. While convex optimization theory offers robust assurances, the loss
surfaces in deep learning are typically non-convex. Nonetheless, these
theoretical findings offer valuable insights, particularly in local regions where
the loss surface approximates convexity or smoothness (Goodfellow et al.,
2016).
Furthermore, practical deep learning often benefits from adaptive techniques
such as Adam or RMSProp, which adjust the gradient update rules. However,
these methods may not possess the same rigorous convergence guarantees as
standard gradient descent (Reddi et al., 2018).

3.2. Convergence of Gradient Descent for Non-Convex Functions:

In the context of non-convex optimization, gradient descent does not guarantee
convergence to a global minimum. However, under mild conditions, it can
converge to a local minimum or a stationary point, the points where the gradient
vanishes. The core of the analysis lies in demonstrating that the gradient norm, ||
Vf(6y) Il, tends toward zero as the number of iterations increases, signifying
convergence to a critical point.

Proof of Convergence to a Stationary Point
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To establish this result, we make the following assumptions:

1. L-Smoothness: The function f(8) is L-smooth, meaning its gradient is
Lipschitz continuous:

NVf(O)—VFOHYISLIO—-6"I

This property leads to the descent lemma:
T L 2
f(Oe+1) < f((6) +Vf(6r) (Br1 — 6p) + > Il Orr1 — O i
2. Gradient Descent Update Rule:

Orr1 = 0 — aVf(6,).

3. Bounded Below: The function f(8) is bounded below. There exists a
constant f* > —oo such that:

HOES N

Substituting the update rule into the descent lemma gives:
2 Laz 2
f(Be41) < F(8) = a N VF(8) IP+—— I V(8 I
Rewriting:
La? 5
f(Be41) < f(6p) — (a — T) IRFACHN|

. . . 1 .
To ensure progress (i.e., a decrease in function value), choose 0 < a < T This
guarantees:

Hence:

a
f(6e1) < (8 =5 N VF(8) IP

Summingovert =0toT — 1:

FO) < £(6) =5 ) NTF©) I
0

N[ R

Using the boundedness of f(6):
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f(Bo) — f* = 2 1 V£ 117

N[ R

Dividing both sides by T
2(f(eo) .15
I V£ 112
Z :

Taking the limitas T — oo:

li AN VF(6) 1?7 =0
ng;Zn £ 12 =

This implies that the average norm of the gradient converges to zero. Therefore,
there exists a sequence {6, }for which || Vf(8,) Il becomes arbitrarily small,
indicating convergence to a stationary point (Ghadimi & Lan, 2013).

Comparative Discussion and Practical Relevance:

In non-convex landscapes, gradient descent may converge to a local minimum, a
saddle point, or a plateau region (areas where the gradient is close to zero but the
function value is not minimal). However, the strict saddle property, where the
Hessian at saddle points has at least one negative eigenvalue, allows gradient
descent to often escape saddle points. This is especially evident in stochastic
settings, where random perturbations in algorithms like stochastic gradient
descent (SGD) provide the momentum necessary to bypass such saddle regions
(Ge et al., 2015).

Quadratic Surfaces and Step Size Influence:
A common form of a quadratic function is given by:
F(X,Y)=aX?+BY? +yXY + w

This form is frequently used in applications like resource allocation and
optimization modeling. The parameters a, B, v, and ® determine the curvature
and orientation of the function's surface. The behaviour of gradient descent on
such functions is affected by the step size a, which influences the convergence
speed and stability.
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Table 3.1: Trend insights

o value | Convergence Stability Interpretation
Speed

a=0.1 Likely slow Very stable Conservative updates:
good precision, slower
convergence

a=0.2 Moderate Balanced Faster updates with
maintained stability

a=0.3 Fastest Possibly unstable | Aggressive updates.
Might overshoot or
oscillate before settling.

If experimental results indicate that o = 0.3 leads to quick and stable
convergence, it could represent an optimal balance between speed and
robustness. In many real-world applications, especially those involving
Stochastic Gradient Descent (SGD), random initialization and stochasticity help
prevent getting stuck in poor saddle points and facilitate convergence to useful
local minima (Goodfellow et al., 2016).

IV Numerical Application

Application 1: Consider the transportation cost function T(Q,D) = aQ? +
BD? + yQD + w, where T(Q, D)represent the transportation cost based on the
quantity (Q) of goods to be transported and the distance to be covered in
transportation (D) witha, B, y, and was constants. Show that T(Q, D) is convex
if « >0 and B > 0,indicating that the transportation cost increases at an
increasing rate with an increase in either quantity or distance.

Solution

Given the Transportation Cost Function, we define T(Q,D) = aQ? + fD? +
yQ@D + w, where:

T(Q, D) is the total transportation cost.; Q = Quantity of goods transported;
D = Distance; a, 8,y,w as constants.
Now, with constantsa =4, =1, y=-2, @ =0
The specific cost function becomes:
T(Q,D) = 4Q? 4+ D? —2QD
This quadratic bivariate function can also be represented in vector form as:

T(x) = xTAx
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Where:

I My

Since the cross-term coefficient y = —2, and it appears as QD, it must be split
between A4,, and 4,4, each being —1to maintain symmetry.

Now, to ensure convexity, matrix A must be positive semidefinite. Since a =
4 >0 and

B =1 > 0, convexity generally holds provided that:
Al = (D) - (-1)*=3>0
In addition, the leading principal minors are positive.Thus, T(Q, D) is convex.

By specifying starting points and algorithm setup, the optimization of T(Q, D)is
carried out using three methods, including AMGT (Accelerated Mirror Gradient
Technique or similar), from the same initial guess but with different
configurations, as displayed in Table 4.1.

Table 4.1: Transportation cost function analysis

Methods GD at CG at AMGT at a = 0.1, 0.2, and 0.3 respectviely
a=01 a=0.1

Iteration | T(Q,D) T(Q,D) T(Q,D) T(Q,D) T(Q,D)

1 2.841600 | 3.360000 |2.100208 | 31.996444 | 101.6887051

10 0.135361 | 0.050166 [ 0.011700 | 0.024588 185200.1144

20 0.005533 | 0.000429 | 0.000578 | 0.000012 8.452832713 x 10°

30 0.000226 | 0.000004 | 0.000029 | 0.000000 3.858009564 x 1012

40 0.000009 | 0.000000 | 0.000001 | 0.000000 1.760857964 x 10'°

50 0.000000 | 0.000000 | 0.000000 | 0.000000 8.036840592 x 10%°

100 0.000000 | 0.000000 | 0.000000 | 0.000000 1.591807268 x 10°8

GD shows a consistent, monotonic reduction in cost, indicating stable but
relatively slow convergence. It performs predictably and safely under small
learning rates but does not leverage second-order information, hence slower
convergence. Hence, GD at the same step size converges reliably but at a slower
rate.

CG significantly outperforms GD in speed, demonstrating its effectiveness on
quadratic convex functions due to its direction-preserving strategy.

AMGT: At a = 0.1 and 0.2: AMGT performs extremely well, particularly at o =
0.2, reaching minimum cost faster than both GD and CG. At a = 0.3: AMGT
becomes unstable and diverges, highlighting its sensitivity to hyper-parameters.
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2 3 4 5 6

GRADIENTDESCENT  ———CONJUGATE GRADIENT ~ ——AMGT

Fig 4.1: Convergence path for T(Q,D) at « = 0.1,0.2,and 0.3

This analysis underscores the importance of step size tuning in iterative
optimization algorithms. While AMGT can be highly efficient, improper
parameter settings can lead to catastrophic divergence. Fig 4.1 visually confirms
these trends, showing rapid convergence curves for CG and AMGT (a = 0.2),
slower descent for GD, and divergence for AMGT at « = 0.3.

Discussion for application 1:

This behaviour aligns with theoretical expectations—GD’s simplicity and
guaranteed convergence for convex functions come at the cost of speed
(Nesterov, 2018).

This matches the theory that CG converges in at most n iterations for quadratic
problems, assuming exact arithmetic (Shewchuk, 1994). It is optimal for
symmetric positive definite systems like the one described. Thus, CG with a =
0.1 achieves the most stable and rapid convergence. This result aligns with its
known superiority for quadratic forms due to orthogonality properties in
gradient updates (Shewchuk, 1994).

AMGT's high efficiency at tuned step sizes reflects the strength of adaptive
methods in capturing underlying curvature, a property emphasized in deep
learning optimization research (Goodfellow et al., 2016). However, its
divergence at a = 0.3 underscores the fragility of adaptive methods when step
size exceeds the stability threshold (Ruder, 2016).

Application 2: Optimization of the convex function f(x,y) = 2xy +y — x? —

2y2:

In this application, we examine the convergence behaviour of three optimization
methods—Gradient Descent (GD), Conjugate Gradient (CG), and Adaptive
Modified Gradient-Type (AMGT)—on the bivariate convex function:
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f(x,y) =2xy +y — x* = 2y?

By initiating x, = 2 and y, = 2, and setting the parameters for AMGT as
my(x,y) = (1000,1000), 7 =50, B =0.13, y = 0.1, the following results
were obtained:

Table 4.2: Optimization Results for f(x,y) = 2xy +y — x? — 2y?

Methods Gradient Descent Conjugate Gradient AMGT
Iteration f(x,y) at f(x,y) at f(x,y) at
a=0.1 a=0.1 ap=0.1
1 -3.080000 -3.08 -0.084282334
10 -4263.708589 -603182.468126262 -490.5670125
20 -34952895.710000 -1110219359887.00 -2146227.90

The results showed that all three methods (GD, CG and AMGT) showed
significant decreases in function value over 20 iterations. In addition, the
decrease in function values suggests convergence toward minima or saddle
points, with varying magnitudes and patterns across methods.

Gradient Descent (GD), exhibited a steady descent in function value. At iteration
1, it reduced the function to -3.08, and after 20 iterations reached approximately
-34.95 million. This route is typical of first-order gradient methods, which are
sensitive to the choice of step size a and converge slowly if not optimized
(Nocedal & Wright, 2006).

Conjugate Gradient (CG), Showed the most rapid descent, with function values
dropping from -3.08 to -1.11 x 102 by iteration 20. This method leverages
information from previous steps to accelerate convergence without direct
second-order (Hessian) computation.

Adaptive Modified Gradient-Type (AMGT), demonstrated moderate but
consistent descent, reaching approximately -2.15x 108 million by iteration 20. It
applies momentum-like components and adaptive scaling, enabling better
control of the optimization dynamics.

Discussion for application 2:

Gradient Descent (GD) is stable but slow, aligning with theoretical expectations
in convex optimization where the convergence rate is typically linear under
constant learning rates in line with Boyd & Vandenberghe (2004). Conjugate
Gradient (CG), isfast, this behaviour may suggest instability or overstepping in
regions where the curvature changes rapidly.CG is known for superlinear
convergence in convex quadratic problems, but in non-quadratic or ill-
conditioned landscapes, it may overshoot minima or diverge (Shewchuk, 1994).
Adaptive Modified Gradient-Type (AMGT) method balances speed and
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stability, with performance suggesting controlled descent. This aligns with
adaptive learning approaches (e.g., Adam, RMSProp) in deep learning, which
adjust update steps based on historical gradients and gradient magnitude it aligns
with Kingma & Ba (2015).

Comparing the three methods, GD is computationally cheap and stable but
suffers in efficiency, while the CG offers excellent speed in well-conditioned
problems but can become unstable without preconditioning or line search and
the AMGT, inspired by modern deep learning optimizers, incorporates
adaptivity and momentum, providing a robust and generalizable method across
problem types. These findings emphasize the importance of method selection
and parameter tuning, as optimization efficiency and stability are sensitive to
problem structure and algorithmic settings, which is in line with Goodfellow et
al.(2016).

V. Conclusions

This study examined the convergence behaviour of gradient descent (GD) and
its variants—Conjugate Gradient (CG) and Adaptive Modified Gradient-Type
(AMGT)—across different optimization scenarios. Theoretical analysis
confirmed that GD achieves sub-linear convergence for convex functions and
linear convergence for strongly convex ones. For non-convex problems, it can
converge to stationary points under mild conditions.

Numerical experiments supported these findings. CG demonstrated superior
performance for quadratic problems due to its ability to exploit problem
structure. GD showed consistent, if slower, convergence, making it a stable
baseline. AMGT provided faster convergence when appropriately tuned (e.g., o
= (.2) but became unstable with overly aggressive learning rates (e.g., a = 0.3).

In application problems, CG excelled in minimizing a transportation cost
function and a bivariate convex function due to its rapid descent. AMGT
matched or exceeded CG’s speed when hyperparameters were well chosen. GD,
though slower, reliably approached optima across all cases.

V1. Recommendations

e Use CG for well-conditioned, convex quadratic problems where speed is
essential.

o Apply GD for general-purpose optimization when stability is preferred
over speed.

e Use AMGT or adaptive methods like Adam for problems where tuning is
feasible and fast convergence is desired, especially in deep learning.

Selecting the right method and step size is crucial, as convergence and efficiency
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depend on problem structure and algorithm sensitivity.
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