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Abstract 

Gradient descent is a fundamental optimization algorithm commonly used in machine 

learning and deep learning to minimize objective functions. Despite its simplicity, 

understanding its convergence behaviour in different optimization landscapes remains 

critical for ensuring efficient and stable training of models. This study examines the 

theoretical and practical convergence properties of gradient descent in convex, strongly 

convex, and non-convex scenarios. The aim was to analyse how factors such as function 

smoothness, step size, and algorithmic variants affect convergence to minima or 

stationary points. We used both theoretical proofs and numerical experiments to assess 

performance. Convergence proofs were presented for convex and smooth functions, 

demonstrating sub-linear convergence for gradient descent, and for strongly convex 

functions, showing linear convergence. In non-convex settings, we showed that the 

gradient descent converges to stationary points under standard assumptions, supported 

by theoretical guarantees. To validate these results, we apply gradient descent, 

conjugate gradient, and an Adaptive Modified Gradient-Type (AMGT) method to 

optimize convex and bivariate quadratic functions. Our simulations indicated that while 

standard gradient descent ensured stable but slower convergence, conjugate gradient 

methods offered faster descent in convex quadratic problems. AMGT demonstrated 

improved convergence speed with appropriate tuning but diverged with excessively 

high learning rates, highlighting the importance of hyperparameter sensitivity. In 

conclusion, the study confirms that the convergence behaviour of gradient-based 

methods depends significantly on problem structure and learning rate selection. For 

convex problems, using fixed learning rates below the inverse of the Lipschitz constant 

ensures convergence. In non-convex domains, adaptive methods such as Adam and 

learning rate scheduling can improve performance, especially in deep learning 

applications. We recommend careful step size tuning and method selection based on 

problem characteristics to balance convergence speed and stability in practical 

applications. 

Keywords: gradient descent, convergence analysis, convex optimization, non-convex 

functions, learning rate, conjugate gradient method, adaptive optimization, deep 

learning 
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I. INTRODUCTION 

The gradient descent algorithm has its roots in classical optimization theory, 

tracing back to the 19th century. The concept of a gradient-based optimization 

method was formally introduced by Augustin-Louis Cauchy in 1847, who 

proposed the method of steepest descent as a numerical tool for solving systems 

of equations, laying the groundwork for modern iterative function minimization. 

Throughout the 20th century, gradient-based methods saw further advancements 

in numerical analysis, convex optimization, and control theory. Notably, 

Marquardt (1963) made significant contributions by introducing the Levenberg-

Marquardt algorithm, which greatly enhanced optimization in nonlinear least-

squares problems. 

Gradient descent gained prominence in the realm of machine learning with the 

emergence of artificial neural networks. One of its early applications was in the 

perceptron model devised by Frank Rosenblatt in 1958. However, the 



SOLVANGLE (Journal of Theoretical Insights), Vol. 1, No, 1, June 2025, pp. 7-26 

Website: https://klamidas.com/solvangle/ 
 

9 
 

perceptron's limitation to solving linearly separable problems led to a temporary 

decline in interest. The 1980s saw a resurgence of interest in neural networks 

with the introduction of the back propagation algorithm by Rumelhart, Hinton, 

and Williams (1986). This breakthrough utilized stochastic gradient descent 

(SGD) to efficiently train multi-layer perceptrons, driving significant 

advancements in supervised learning tasks. 

The 2010s marked a period of rapid progress in deep learning, where deep 

neural networks achieved cutting-edge results in areas like image recognition 

(Krizhevskyet al., 2012), natural language processing (Vaswani et al., 2017), 

and reinforcement learning (Silver et al., 2016). These successes heightened 

interest in understanding and enhancing the convergence behavior of gradient 

descent, particularly in the face of the complex, non-convex landscapes 

prevalent in deep learning. 

More recently, Laisin and Adigwe (2025) delved into the convergence behavior 

of the Adaptive Modified Gradient Technique (AMGT) in their study 

"Implementation and Comparative Analysis of AMGT Method in Maple 24: 

Convergence Performance in Optimization Problems." Their analysis offered 

comparative insights into the sensitivity and efficiency of gradient-based 

methods across various optimization scenarios. Expanding on this research, 

Laisin et al. (2024) explored the construction of rational polyhedra on an n×n 

board, introducing structural considerations relevant to integral polyhedral 

optimization. Their work provides valuable geometric insights applicable to 

studying constraint structures in optimization problems.In a related study, Laisin 

et al. (2025) investigated boundedness and solution size in rational linear 

programming and polyhedral optimization. This research lays theoretical 

foundations that shed light on the behavior of gradient-based methods, 

especially in constrained optimization scenarios involving rational polyhedra. 

Furthermore, Laisin and Edike (2025) tackled the construction of simplex linear 

integer programming problems with application, exploring differentiated 

solution techniques suitable for discrete optimization challenges. These 

constructions serve as a link between integer programming formulations and 

continuous optimization methods like gradient descent. 

Collectively, these contributions highlight the evolving significance of gradient 

descent not only in contemporary machine learning but also in classical and 

discrete optimization domains. This paper builds on these advancements by 

examining the convergence properties of gradient descent across convex, 

polyhedral, and deep learning contexts, with a focus on how structural 

characteristics—such as rational constraints and problem boundedness—affect 

the efficacy and efficiency of gradient-based approaches. 
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II. Preliminaries and Definitions 

To address challenges in optimization, researchers have introduced advanced 

techniques: 

 Momentum-based methods: Nesterov (1983) introduced momentum-

based methods to accelerate convergence by incorporating previous 

gradients. 

 Adaptive learning rate methods: Kingma and Ba (2014) proposed Adam, 

an algorithm for first-order gradient-based optimization of stochastic 

objective functions, based on adaptive estimates of lower-order 

moments. arxiv.org 

 Second-order methods: Amari (1998) developed natural gradient 

descent, which considers the geometry of the parameter space by using 

the Fisher information matrix. 

researchgate.net+2dl.acm.org+2researchgate.net+2 

These methods have significantly influenced the study of gradient descent 

convergence. 

Definitions: 

Definition 2.1: Convexity and Smoothness 

For many optimization problems, particularly in classical machine learning, the 

loss function is convex. A function 𝑓(𝜃) is convex if: 

𝑓(𝜆𝜃1 + (1 − 𝜆)𝜃2) ≤ 𝜆𝑓(𝜃1) + (1 − 𝜆)𝑓(𝜃2), ∀𝜆 ∈ [0,1]. 

If a function is strongly convex, gradient descent is guaranteed to converge  

linearly to the global optimum (Nesterov, 2004). 

Definition 2.2:  Lipschitz Continuity of Gradients 

The gradient 𝛻𝑓(𝜃) is assumed to be L-Lipschitz continuous, meaning that the 

function's rate of change is bounded: 

∥ 𝛻𝑓(𝜃1) − 𝛻𝑓(𝜃2) ∥    ≤     𝐿 ∥ 𝜃1 − 𝜃2 ∥ 

This condition ensures that the optimization process does not behave erratically 

(Laisin and Adigwe, 2025). 

Definition 2.3:  Non-Convex Settings and Stationary Points 

In deep learning, loss functions are typically non-convex, which means gradient 

descent is not guaranteed to reach a global minimum. However, it has been 
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shown that gradient descent still converges to a stationary point (a point where 

𝛻𝑓(𝜃) = 0 (Ge et al., 2015). 

Definition 2.4:  Factors Influencing the Study of Gradient Descent Convergence 

2.4.1 Advances in Mathematical Optimization: Theoretical advancements in 

convex analysis and optimization algorithms have shaped modern gradient 

descent studies (Nemirovski & Yudin, 1983). 

2.4.2 Computing Power and Scalability:The availability of GPUs and TPUs has 

allowed for large-scale experiments, influencing research into adaptive 

optimization methods. 

2.4.3 Practical Performance in Deep Learning: The empirical success of 

methods like Adam led to studies on their theoretical properties and limitations 

(Reddiet al., 2018). 

Definition 2.5:  Circumstances Leading to the Study of Gradient Descent in 

Deep Learning 

Several developments in deep learning motivated the need for studying gradient 

descent convergence: 

2.5.1 Large-Scale Datasets and High-Dimensional Optimization:Modern deep 

learning models are trained on massive datasets (e.g., Image Net), requiring 

optimization techniques that scale efficiently. 

2.5.2 Non-Convexity and the Challenge of Local Minima:Theoretical studies 

suggested that neural network loss functions contain many saddle points rather 

than local minima, making convergence analysis crucial (Choromanska et al., 

2015). 

2.5.3 Batch vs. Stochastic Optimization: Stochastic gradient descent (SGD) 

became the dominant optimization method, requiring research into stochastic 

convergence properties (Bottou, 2010). 

Definition 2.6:   

2.6.1 Convex combination: 

Given vectors𝑥1, 𝑥2, … . . 𝑥𝑛 in a vector space, a convex combination is any 

vector of the form: 

∑ 𝜆𝑖𝑥𝑖

𝑛

𝑖=1

= 𝜆1𝑥1 +  𝜆2𝑥2 + ⋯ +  𝜆𝑛𝑥𝑛 

where each 𝜆𝑖 ≥ 0, and 
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∑ 𝜆𝑖 = 1

𝑛

𝑖=1

 

 

2.6.2 Convex Set: 

A set is called convex if, for any two points within the set, the line segment 

connecting them lies entirely within the set. In other words, a set is convex if the 

convex combination of any two points in the set also belongs to the set. 

A

P

R

B

P

Q

 C

P

R
D

P

Q
 

A and B are convex sets, but C and D are non-convex sets. 

2.6.3 Extreme Point of a Convex Set: 

A point 𝑥 in a convex set C is called an extreme point if it cannot be written as a 

convex combination of two distinct points 𝑥1 and 𝑥2 in C. That is, if 

𝑥 = 𝜆𝑥1 + (1 − 𝜆)𝑥2for 0 < 𝜆 < 1 

then it must be that 𝑥1  =  𝑥2 =  𝑥. 

Note: Every extreme point of a convex set lies on its boundary. However, not 

every boundary point of a convex set is necessarily an extreme point. 

2.6.4 Convex Hull: 

The convex hull of a set X, denoted as conv(X), is the smallest convex set that 

contains X. Equivalently, it is the set of all convex combinations of points in X. 

2.6.5 Convex Function: 

A function 𝑓(𝑥) is said to be strictly convex if, for any two distinct points 𝑥1 

and 𝑥2, and for all 𝜆 ∈ (0,1), the following inequality holds: 



SOLVANGLE (Journal of Theoretical Insights), Vol. 1, No, 1, June 2025, pp. 7-26 

Website: https://klamidas.com/solvangle/ 
 

13 
 

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) < 𝜆𝑓(𝑥1)  + (1 − 𝜆)𝑓(𝑥2) 

This means the graph of  𝑓(𝑥) lies strictly below the straight line connecting any 

two points on the graph.However, a function 𝑓(𝑥) is strictly concave if−𝑓(𝑥) is 

strictly convex. 

2.6.6 Convex Polyhedron: 

A convex polyhedron is the set of all convex combinations of a finite number of 

points. In other words, it is the convex hull of a finite set of points, and 

represents a bounded or unbounded convex region formed by these points 

(Laisin et al., 2024). 

Theorem 1: A hyper-plane is a convex set. 

Proof: 

Consider a hyper-plane defined by 

𝑋 = {𝑥 ∈ 𝑅𝑛 ∣ 𝑐𝑇𝑥 = 𝑧} 

Let 𝑥1 and 𝑥2 be any two points in the hyper-plane𝑋. Then: 

𝑐𝑇𝑥1 = 𝑧 and 𝑐𝑇𝑥2 = 𝑧 

Now, consider any convex combination of 𝑥1 and 𝑥2: 

𝑥3 = 𝜆𝑥1 + (1 − 𝜆)𝑥2, ∀ 0 ≤ 𝜆 ≤ 1 

Then, 

𝑐𝑇𝑥3 = 𝜆𝑐𝑇𝑥1 + (1 − 𝜆)𝑐𝑇𝑥2 = 𝜆𝑥1 + (1 − 𝜆)𝑥2 = 𝑧 

This implies that 𝑥3 ∈ 𝑋. Since any convex combination of points in 𝑋 also lies 

in𝑋, by definition, the hyper-plane 𝑋 is a convex set.  

QED 

Theorem 2: 

The intersection of two convex sets is also a convex set. 

Proof: 

Let 𝑋1 and 𝑋2 be two convex sets, and let 

𝑋3 = 𝑋1 ∩ 𝑋2 

Take any two points 𝑥1, 𝑥2 ∈ 𝑋. By definition of intersection : 

𝑥1, 𝑥2 ∈ 𝑋1𝑎𝑛𝑑 𝑥1, 𝑥2 ∈ 𝑋2 
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Since both 𝑋1 and 𝑋2 are convex, for any 0 ≤ 𝜆 ≤ 1: 

𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑋1 𝑎𝑛𝑑 𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑋2 

Therefore, 

𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑋1 ∩ 𝑋2 = 𝑋3 

Thus, by definition, 𝑋3 is a convex set.  

QED 

III. Main Results and Discussions 

3.1. Convergence of Gradient Descent for Convex and Smooth Functions: 

Gradient descent is a fundamental algorithm in optimization, widely used in 

both classical convex optimization and modern machine learning, particularly 

deep learning. When the objective (or loss) function 𝑓(𝜃) is convex and smooth, 

and the learning rate 𝛼 is chosen appropriately, gradient descent can be shown to 

converge to a global minimum. 

Gradient Descent Update Rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝛻𝑓(𝜃𝑡) 

 If 𝑓(𝜃𝑡) is L-smooth; that is, its gradient is Lipschitz continuous with constant 

L, then for a step size 0 < 𝛼 ≤
1

𝐿
    , gradient descent guarantees a monotonic 

decrease in the objective function: 

𝑓(𝜃𝑡+1) ≤ 𝑓(𝜃𝑡) −
𝛼

2
∥ 𝛻𝑓(𝜃𝑡) ∥2 

This inequality ensures that each update decreases the function value, thereby  

guiding the optimization towards a minimizer. 

Assumptions: 

To rigorously analyze convergence, we assume: 

1. Convexity: 

A function 𝑓(𝜃) is convex if for all 𝜃, 𝜃′ ∈ 𝑅𝑑: 

𝑓(𝜃′) ≥ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇(𝜃′ − 𝜃) 

2. L-smoothness (Gradient Lipschitz Continuity): 

There exists 𝐿 > 0 such that for all 𝜃, 𝜃′: 
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∥ 𝛻𝑓(𝜃) − 𝛻𝑓(𝜃′) ∥≤ 𝐿 ∥ 𝜃 − 𝜃′ ∥ 

Equivalently, for any 𝜃, 𝜃′, we have: 

𝑓(𝜃′) ≤ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇(𝜃′ − 𝜃) +
𝐿

2
∥ 𝜃′ − 𝜃 ∥2 

Proof of Convergence for Smooth Convex Functions 

Using the update rule  

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝛻𝑓(𝜃𝑡) 

and the smoothness property, we obtain:  

𝑓(𝜃𝑡+1) ≤ 𝑓(𝜃𝑡) −
𝛼

2
∥ 𝛻𝑓(𝜃𝑡) ∥2+

𝐿

2
∥ 𝜃′ − 𝜃 ∥2 

= 𝑓(𝜃𝑡) − 𝛼 ∥ 𝛻𝑓(𝜃𝑡) ∥2+
𝐿𝛼2

2
∥ 𝛻𝑓(𝜃𝑡) ∥2 

=  𝑓(𝜃𝑡) − (𝛼 −
𝐿𝛼2

2
) ∥ 𝛻𝑓(𝜃𝑡) ∥2 

To ensure that the term (𝛼 −
𝐿𝛼2

2
) is positive (hence ensuring descent), it 

suffices to choose 

0 < 𝛼 <
𝐿

2
. For stability and simplicity, a common choice is 𝛼 ≤

1

𝐿
, which 

yields: 

𝑓(𝜃′) ≤ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇(𝜃′ − 𝜃) +
𝐿

2
∥ 𝜃′ − 𝜃 ∥2 

This guarantees a monotonic decrease in the function value at each step. 

Convergence for Strongly Convex Functions: 

If, in addition to being smooth and convex, the function 𝑓 is 𝜇-strongly convex 

(with 𝜇 > 0), then gradient descent enjoys a faster, linear convergence rate. A 

function 𝑓 is strongly convex if: 

𝑓(𝜃′) ≥ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇(𝜃′ − 𝜃) +
𝜇

2
∥ 𝜃′ − 𝜃 ∥2 

Under this condition, we can derive a strong inequality that relates the gradient 

norm to the sub-optimality: 

∥ 𝛻𝑓(𝜃𝑡) ∥ 2 ≥ 2𝜇(𝑓(𝜃𝑡) − 𝑓(𝜃∗)) 

Plugging this into our earlier descent bound: 
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𝑓(𝜃𝑡)  ≤    𝑓(𝜃𝑡) −
𝛼

2
∥ 𝛻𝑓(𝜃𝑡) ∥2 

                     ≤ 𝑓(𝜃𝑡) − 𝛼𝜇(𝑓(𝜃𝑡) − 𝑓(𝜃∗)) 

              ≤ (1 − 𝛼𝜇)𝑓(𝜃𝑡) − 𝑓(𝜃∗) 

This gives: 

𝑓(𝜃𝑡) − 𝑓(𝜃∗) ≤ (1 − 𝛼𝜇)𝑓(𝜃𝑡) − 𝑓(𝜃∗) 

Which shows geometric (linear) convergence to the unique minimizer 𝜃∗, 

provided that 

0 < 𝛼 ≤
1

𝐿
. 

Comparative Discussion and Practical Relevance: 

The rate of convergence depends crucially on the structure of the function being 

optimized: 

 For general convex and L-smooth functions, gradient descent has a sub-

linear convergence rate of 𝑂(1/𝑡). 

 In case of strongly convex functions, the convergence rate becomes 

linear, at 𝑂((1 − 𝛼𝜇)𝑡),leading to exponential acceleration (Nesterov, 

2004). 

This distinction is crucial in the context of large-scale machine learning 

applications. While convex optimization theory offers robust assurances, the loss 

surfaces in deep learning are typically non-convex. Nonetheless, these 

theoretical findings offer valuable insights, particularly in local regions where 

the loss surface approximates convexity or smoothness (Goodfellow et al., 

2016). 

Furthermore, practical deep learning often benefits from adaptive techniques 

such as Adam or RMSProp, which adjust the gradient update rules. However, 

these methods may not possess the same rigorous convergence guarantees as 

standard gradient descent (Reddi et al., 2018). 

3.2. Convergence of Gradient Descent for Non-Convex Functions: 

In the context of non-convex optimization, gradient descent does not guarantee 

convergence to a global minimum. However, under mild conditions, it can 

converge to a local minimum or a stationary point, the points where the gradient 

vanishes. The core of the analysis lies in demonstrating that the gradient norm, ∥

𝛻𝑓(𝜃ₜ) ∥, tends toward zero as the number of iterations increases, signifying 

convergence to a critical point. 

Proof of Convergence to a Stationary Point 
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To establish this result, we make the following assumptions: 

1. L-Smoothness: The function 𝑓(𝜃) is L-smooth, meaning its gradient is 

Lipschitz continuous: 

∥ 𝛻𝑓(𝜃) − 𝛻𝑓(𝜃′) ∥≤ 𝐿 ∥ 𝜃 − 𝜃′ ∥ 

This property leads to the descent lemma: 

𝑓(𝜃𝑡+1) ≤ 𝑓((𝜃𝑡) + 𝛻𝑓(𝜃𝑡)𝑇(𝜃𝑡+1 − 𝜃𝑡) +
𝐿

2
∥ 𝜃𝑡+1 − 𝜃𝑡 ∥2 

2. Gradient Descent Update Rule: 

𝜃𝑡+1  = 𝜃𝑡 − 𝛼𝛻𝑓(𝜃𝑡). 

3. Bounded Below: The function 𝑓(𝜃) is bounded below. There exists a 

constant 𝑓∗ > −∞ such that: 

𝑓(𝜃) ≥ 𝑓∗ 

Substituting the update rule into the descent lemma gives: 

𝑓(𝜃𝑡+1) ≤ 𝑓(𝜃𝑡) − 𝛼 ∥ 𝛻𝑓(𝜃𝑡) ∥2+
𝐿𝛼2

2
∥ 𝛻𝑓(𝜃𝑡) ∥2 

Rewriting: 

𝑓(𝜃𝑡+1) ≤ 𝑓(𝜃𝑡) − (𝛼 −
𝐿𝛼2

2
) ∥ 𝛻𝑓(𝜃𝑡) ∥2 

To ensure progress (i.e., a decrease in function value), choose  0 < 𝛼 ≤
1

𝐿
. This 

guarantees: 

𝛼 −
𝐿𝛼2

2
≥

𝛼2

2
 

Hence: 

𝑓(𝜃𝑡+1) ≤ 𝑓(𝜃𝑡) −
𝛼

2
∥ 𝛻𝑓(𝜃𝑡) ∥2 

Summing over 𝑡 = 0 to 𝑇 − 1: 

𝑓(𝜃𝑇) ≤ 𝑓(𝜃0) −
𝛼

2
∑ ∥ 𝛻𝑓(𝜃𝑡) ∥2

𝑇−1

0

 

Using the boundedness of 𝑓(𝜃): 
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𝑓(𝜃0) − 𝑓∗ ≥
𝛼

2
∑ ∥ 𝛻𝑓(𝜃𝑡) ∥2

𝑇−1

0

 

Dividing both sides by 𝑇: 

2(𝑓(𝜃0) − 𝑓∗)

𝛼𝑇
≥

1

𝑇
∑ ∥ 𝛻𝑓(𝜃𝑡) ∥2

𝑇−1

0

 

Taking the limit as 𝑇 → ∞: 

lim
𝑇→∞

1

𝑇
∑ ∥ 𝛻𝑓(𝜃𝑡) ∥2

𝑇−1

0

= 0 

This implies that the average norm of the gradient converges to zero. Therefore, 

there exists a sequence {𝜃𝑡}for which ∥ 𝛻𝑓(𝜃ₜ) ∥ becomes arbitrarily small, 

indicating convergence to a stationary point (Ghadimi & Lan, 2013). 

Comparative Discussion and Practical Relevance: 

In non-convex landscapes, gradient descent may converge to a local minimum, a 

saddle point, or a plateau region (areas where the gradient is close to zero but the 

function value is not minimal). However, the strict saddle property, where the 

Hessian at saddle points has at least one negative eigenvalue, allows gradient 

descent to often escape saddle points. This is especially evident in stochastic 

settings, where random perturbations in algorithms like stochastic gradient 

descent (SGD) provide the momentum necessary to bypass such saddle regions 

(Ge et al., 2015). 

Quadratic Surfaces and Step Size Influence: 

A common form of a quadratic function is given by: 

𝐹(𝑋, 𝑌) = 𝛼𝑋2 + 𝛽𝑌2 + 𝛾𝑋𝑌 + 𝜔 

This form is frequently used in applications like resource allocation and 

optimization modeling. The parameters α, β, γ, and ω determine the curvature 

and orientation of the function's surface. The behaviour of gradient descent on 

such functions is affected by the step size 𝛼, which influences the convergence 

speed and stability. 
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Table 3.1: Trend insights 

α value Convergence 

Speed 
 

Stability Interpretation 

α = 0.1       Likely slow    Very stable Conservative updates: 

good precision, slower 

convergence 

α = 0.2        Moderate              Balanced Faster updates with 

maintained stability 

α = 0.3        Fastest     Possibly unstable Aggressive updates. 

Might overshoot or 

oscillate before settling. 
 

If experimental results indicate that α = 0.3 leads to quick and stable 

convergence, it could represent an optimal balance between speed and 

robustness. In many real-world applications, especially those involving 

Stochastic Gradient Descent (SGD), random initialization and stochasticity help 

prevent getting stuck in poor saddle points and facilitate convergence to useful 

local minima (Goodfellow et al., 2016). 

IV Numerical Application 

Application 1: Consider the transportation cost function  𝑇(𝑄, 𝐷) = 𝛼𝑄2 +

𝛽𝐷2 + 𝛾𝑄𝐷 + 𝜔, where 𝑇(𝑄, 𝐷)represent the transportation cost based on the 

quantity (Q) of goods to be transported and the distance to be covered in 

transportation (D) with𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝜔as constants. Show that 𝑇(𝑄, 𝐷) is convex 

if 𝛼 > 0 and 𝛽 > 0,indicating that the transportation cost increases at an 

increasing rate with an increase in either quantity or distance.  

Solution  

Given the Transportation Cost Function, we define 𝑇(𝑄, 𝐷) = 𝛼𝑄2 + 𝛽𝐷2 +

𝛾𝑄𝐷 + 𝜔, where: 

𝑇(𝑄, 𝐷) is the total transportation cost.; 𝑄 = Quantity of goods transported;               

𝐷 = Distance; 𝛼, 𝛽, 𝛾, 𝜔  as constants. 

Now, with constants 𝜶 = 𝟒, 𝜷 = 𝟏, 𝜸 = −𝟐, 𝝎 = 𝟎 

The specific cost function becomes: 

𝑇(𝑄, 𝐷) = 4𝑄2 + 𝐷2 − 2𝑄𝐷 

This quadratic bivariate function can also be represented in vector form as: 

𝑇(𝑥) = 𝑥𝑇𝐴x 
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Where: 

𝑥 = [
𝑄
𝐷

] , 𝐴 = [
4 −1

−1 1
] 

Since the cross-term coefficient 𝛾 = −2, and it appears as 𝑄𝐷, it must be split 

between 𝐴12 and 𝐴21, each being −1to maintain symmetry. 

Now, to ensure convexity, matrix 𝐴 must be positive semidefinite. Since 𝛼 =

4 > 0 and 

𝛽 = 1 > 0, convexity generally holds provided that: 

     |𝐴| = (4)(1) − (−1)2 = 3 > 0 

In addition, the leading principal minors are positive.Thus, 𝑇(𝑄, 𝐷) is convex. 

By specifying starting points and algorithm setup, the optimization of 𝑻(𝑸, 𝑫)is 

carried out using three methods, including AMGT (Accelerated Mirror Gradient 

Technique or similar), from the same initial guess but with different 

configurations, as displayed in Table 4.1. 

Table 4.1: Transportation cost function analysis 

 

GD shows a consistent, monotonic reduction in cost, indicating stable but 

relatively slow convergence. It performs predictably and safely under small 

learning rates but does not leverage second-order information, hence slower 

convergence. Hence, GD at the same step size converges reliably but at a slower 

rate. 

CG significantly outperforms GD in speed, demonstrating its effectiveness on 

quadratic convex functions due to its direction-preserving strategy. 

AMGT: At α = 0.1 and 0.2: AMGT performs extremely well, particularly at α = 

0.2, reaching minimum cost faster than both GD and CG. At α = 0.3: AMGT 

becomes unstable and diverges, highlighting its sensitivity to hyper-parameters. 
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Fig 4.1: Convergence path for 𝑇(𝑄, 𝐷) at 𝛼 = 0.1, 0.2, 𝑎𝑛𝑑 0.3 

This analysis underscores the importance of step size tuning in iterative 

optimization algorithms. While AMGT can be highly efficient, improper 

parameter settings can lead to catastrophic divergence. Fig 4.1 visually confirms 

these trends, showing rapid convergence curves for CG and AMGT (𝛼 = 0.2), 

slower descent for GD, and divergence for AMGT at 𝛼 = 0.3. 

Discussion for application 1:  

This behaviour aligns with theoretical expectations—GD’s simplicity and 

guaranteed convergence for convex functions come at the cost of speed 

(Nesterov, 2018). 

This matches the theory that CG converges in at most 𝑛 iterations for quadratic 

problems, assuming exact arithmetic (Shewchuk, 1994). It is optimal for 

symmetric positive definite systems like the one described. Thus, CG with 𝛼 =

0.1 achieves the most stable and rapid convergence. This result aligns with its 

known superiority for quadratic forms due to orthogonality properties in 

gradient updates (Shewchuk, 1994). 

AMGT's high efficiency at tuned step sizes reflects the strength of adaptive 

methods in capturing underlying curvature, a property emphasized in deep 

learning optimization research (Goodfellow et al., 2016). However, its 

divergence at α = 0.3 underscores the fragility of adaptive methods when step 

size exceeds the stability threshold (Ruder, 2016). 

Application 2: Optimization of the convex function  𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑦 − 𝑥2 −

2𝑦2: 

In this application, we examine the convergence behaviour of three optimization 

methods—Gradient Descent (GD), Conjugate Gradient (CG), and Adaptive 

Modified Gradient-Type (AMGT)—on the bivariate convex function: 
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𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑦 − 𝑥2 − 2𝑦2 

By initiating 𝑥0 = 2 and 𝑦0 = 2,  and setting the parameters for AMGT as 

𝑚0(𝑥, 𝑦) = (1000,1000), 𝜏 = 50,  𝛽 = 0.13,  𝛾 = 0.1, the following results 

were obtained: 

Table 4.2: Optimization Results for 𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑦 − 𝑥2 − 2𝑦2 

Methods Gradient Descent Conjugate Gradient AMGT 

Iteration f(x,y) at 

𝛼 = 0.1 

f(x,y) at 

𝛼 = 0.1 

f(x,y) at 

𝛼0 = 0.1 

1 -3.080000 -3.08 -0.084282334 

10 -4263.708589 -603182.468126262 -490.5670125 

20 -34952895.710000 -1110219359887.00 -2146227.90 
 

The results showed that all three methods (GD, CG and AMGT) showed 

significant decreases in function value over 20 iterations. In addition, the 

decrease in function values suggests convergence toward minima or saddle 

points, with varying magnitudes and patterns across methods. 

Gradient Descent (GD), exhibited a steady descent in function value. At iteration 

1, it reduced the function to -3.08, and after 20 iterations reached approximately 

-34.95 million. This route is typical of first-order gradient methods, which are 

sensitive to the choice of step size α and converge slowly if not optimized 

(Nocedal & Wright, 2006). 

Conjugate Gradient (CG), Showed the most rapid descent, with function values 

dropping from -3.08 to -1.11 × 10¹² by iteration 20. This method leverages 

information from previous steps to accelerate convergence without direct 

second-order (Hessian) computation. 

Adaptive Modified Gradient-Type (AMGT), demonstrated moderate but 

consistent descent, reaching approximately -2.15× 106 million by iteration 20. It 

applies momentum-like components and adaptive scaling, enabling better 

control of the optimization dynamics. 

Discussion for application 2: 

Gradient Descent (GD) is stable but slow, aligning with theoretical expectations 

in convex optimization where the convergence rate is typically linear under 

constant learning rates in line with Boyd & Vandenberghe (2004). Conjugate 

Gradient (CG), isfast, this behaviour may suggest instability or overstepping in 

regions where the curvature changes rapidly.CG is known for superlinear 

convergence in convex quadratic problems, but in non-quadratic or ill-

conditioned landscapes, it may overshoot minima or diverge (Shewchuk, 1994). 

Adaptive Modified Gradient-Type (AMGT) method balances speed and 
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stability, with performance suggesting controlled descent. This aligns with 

adaptive learning approaches (e.g., Adam, RMSProp) in deep learning, which 

adjust update steps based on historical gradients and gradient magnitude it aligns 

with Kingma & Ba (2015). 

Comparing the three methods, GD is computationally cheap and stable but 

suffers in efficiency, while the CG offers excellent speed in well-conditioned 

problems but can become unstable without preconditioning or line search and 

the AMGT, inspired by modern deep learning optimizers, incorporates 

adaptivity and momentum, providing a robust and generalizable method across 

problem types. These findings emphasize the importance of method selection 

and parameter tuning, as optimization efficiency and stability are sensitive to 

problem structure and algorithmic settings, which is in line with Goodfellow et 

al.(2016). 

V. Conclusions 

This study examined the convergence behaviour of gradient descent (GD) and 

its variants—Conjugate Gradient (CG) and Adaptive Modified Gradient-Type 

(AMGT)—across different optimization scenarios. Theoretical analysis 

confirmed that GD achieves sub-linear convergence for convex functions and 

linear convergence for strongly convex ones. For non-convex problems, it can 

converge to stationary points under mild conditions. 

Numerical experiments supported these findings. CG demonstrated superior 

performance for quadratic problems due to its ability to exploit problem 

structure. GD showed consistent, if slower, convergence, making it a stable 

baseline. AMGT provided faster convergence when appropriately tuned (e.g., α 

= 0.2) but became unstable with overly aggressive learning rates (e.g., α = 0.3). 

In application problems, CG excelled in minimizing a transportation cost 

function and a bivariate convex function due to its rapid descent. AMGT 

matched or exceeded CG’s speed when hyperparameters were well chosen. GD, 

though slower, reliably approached optima across all cases. 

VI. Recommendations 

 Use CG for well-conditioned, convex quadratic problems where speed is 

essential. 

 Apply GD for general-purpose optimization when stability is preferred 

over speed. 

 Use AMGT or adaptive methods like Adam for problems where tuning is 

feasible and fast convergence is desired, especially in deep learning. 

Selecting the right method and step size is crucial, as convergence and efficiency 



SOLVANGLE (Journal of Theoretical Insights), Vol. 1, No, 1, June 2025, pp. 7-26 

Website: https://klamidas.com/solvangle/ 
 

24 
 

depend on problem structure and algorithm sensitivity. 

 

References  

Amari, S. (1998). Natural gradient works efficiently in learning. Neural 

Computation, 10(2), 251–276. https://doi.org/10.1162/0899766983000 

17746 

Bottou, L. (2010). Large-scale machine learning with stochastic gradient 

descent. In Proceedings of COMPSTAT'2010 (pp. 177–186). Springer. 

https://doi.org/10.1007/978-3-7908-2604-3_16 

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge 

University Press. https://web.stanford.edu/~boyd/cvxbook/ 

Cauchy, A. L. (1847). Méthode générale pour la résolution des systèmes 

d’équations simultanées. Comptes Rendus Hebdomadaires des Séances 

de l'Académie des Sciences, 25, 536–538. 

https://www.numdam.org/item/ ASENS_1847_1_25__536_0.pdf 

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). 

The loss surfaces of multilayer networks. In Proceedings of the 18th 

International Conference on Artificial Intelligence and Statistics 

(AISTATS).  https://proceedings.mlr.press/v38/choromanska15.html 

Ge, R., Huang, F., Jin, C., & Yuan, Y. (2015). Escaping from saddle points—

Online stochastic gradient for tensor decomposition. In Proceedings of 

the 28th Conference on Learning Theory (COLT) (pp. 797–842). JMLR. 

https://proceedings.mlr.press/v40/Ge15.html 

Ghadimi, S., & Lan, G. (2013). Stochastic first- and zeroth-order methods for 

nonconvex stochastic programming. SIAM Journal on Optimization, 

23(4), 2341–2368. https://doi.org/10.1137/120880811. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

https://www.deeplearningbook.org/ 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In 

Proceedings of the 3rd International Conference on Learning 

Representations (ICLR). https://arxiv.org/abs/1412.6980 

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. 

Proceedings of the 3rd International Conference on Learning 

Representations (ICLR). https://arxiv.org/abs/1412.6980. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification 



SOLVANGLE (Journal of Theoretical Insights), Vol. 1, No, 1, June 2025, pp. 7-26 

Website: https://klamidas.com/solvangle/ 
 

25 
 

with deep convolutional neural networks. Communications of the ACM, 

60(6), 84–90. https://doi.org/10.1145/3065386. 

Laisin, M., & Adigwe, R. U. (2025). Implementation and comparative analysis 

of AMGT method in Maple 24: Convergence performance in 

optimization problems. Global Online Journal of Academic Research 

(GOJAR), 4(2), 26–40. https://klamidas.com/gojar-v4n1-2025-02/ 

Laisin, M., Edike, C., & Bright, O. Osu. (2024). The construction of rational 

polyhedron on an n×n board with some application on integral 

polyhedral. TIJER–International Research Journal, 11(11). 

http://www.tijer.org. 

Laisin, M., Edike, C., & Ujumadu, R. N. (2025). On boundedness and solution 

size in rational linear programming and polyhedral optimization. Global 

Journal of Academic Research (GOJAR). https://klamidas.com/gojar-

v4n1-2025-04/ 

Laisin, M., & Edike, C. (2025). The construction of simplex linear integer 

programming problems with application. Journal of Medicine, 

Engineering & Physical Sciences (JOMEEPS). https://klamidas.com/ 

jomeeps-v3n1-2025-01/ 

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear 

parameters. Journal of the Society for Industrial and Applied 

Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030. 

Nemirovski, A., & Yudin, D. (1983). Problem complexity and method efficiency 

in optimization. Wiley-Interscience. 

Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic 

course. Springer. 

Nesterov, Y. (2018). Lectures on convex optimization (Vol. 137). Springer. 

Nesterov, Y. E. (1983). A method for solving the convex programming problem 

with convergence rate O(1/k2)O(1/k^2)O(1/k2). Soviet Mathematics 

Doklady, 27(2), 372–376. 

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). Springer. 

Reddi, S. J., Kale, S., & Kumar, S. (2018). On the convergence of Adam and 

beyond. International Conference on Learning Representations (ICLR). 

https://arxiv.org/abs/1904.09237. 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information 

storage and organization in the brain. Psychological Review, 65(6), 386–



SOLVANGLE (Journal of Theoretical Insights), Vol. 1, No, 1, June 2025, pp. 7-26 

Website: https://klamidas.com/solvangle/ 
 

26 
 

408. https://doi.org/10.1037/h0042519. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning 

representations by back-propagating errors. Nature, 323(6088), 533–536. 

https://doi.org/10.1038/323533a0. 

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method 

without the agonizing pain. Carnegie Mellon University. 

https://www.cs.cmu.edu/ ~quake-papers/painless-conjugate-gradient.pdf. 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, 

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., 

Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., 

Lillicrap, T., Leach, M., Kavukcuoglu, K., & Silver, D. (2016). 

Mastering the game of Go with deep neural networks and tree search. 

Nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., 

Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. 

Guyon, U. V. Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. 

Vishwanathan, & R. Garnett (Eds.), Advances in neural information 

processing systems (Vol. 30, pp. 6000–6010). Curran Associates, Inc. 

https://arxiv.org/abs/1706.03762. 

 

 

 
 

APA 

 

Laisin, M. & Adigwe, R. U. (2025). Gradient Descent 

Convergence: From Convex Optimization to Deep Learning. 

SOLVANGLE, 1(1), 7-26. https://klamidas.com/solvangle-

v1n1-2025-01/ 

 

MLA 

 

Laisin, Mark & Adigwe, Rosemary U. “Gradient Descent 

Convergence: From Convex Optimization to Deep 

Learning”. SOLVANGLE, vol. 1, no. 1, 2025, pp. 7-26. 

https://klamidas.com/solvangle-v1n1-2025-01/ 

 

 


