MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

AI-DRIVEN ROOT CAUSE ANALYSIS FRAMEWORK FOR DISTRIBUTED MICROSERVICES

IAwodele S. O

Department of Computer Science,
Babcock University, llishan-Remo,
Ogun State, Nigeria
awdeles@babcock.edu.ng

4Ojuawo O. O

Department of Computer Science,
Babcock University, Ilishan-Remo,

Ogun State, Nigeria
0juawo0687 @pg.babcock.edu.ng

ABSTRACT

ARCHITECTURES

%Faruna, J. O

Department of Computer Science,
Babcock University, llishan-Remo,
Ogun State, Nigeria
faruna0100@pg.babcock.edu.ng
5Olorunyomi O. B

Department of Computer Science,
Babcock University, Ilishan-Remo,

Ogun State, Nigeria
Olorunyomi0052@pg.babcock.edu.ng

3Mustapha M. M

Department of Computer Science,
Babcock University, Ilishan-Remo,
Ogun State, Nigeria
mustapha0219@pg.babcock.edu.ng

éChukwulobe I

Department of Computer Science,
Babcock University, Ilishan-Remo,
Ogun State, Nigeria
chukwulobe0408@pg.babcock.edu.ng

"Fayemi T. A
Department of Computer Science,
Babcock University, llishan-Remo,

Ogun State, Nigeria
fayemi0197@pg.babcock.edu.ng

Multi-layered IT systems are characterized by persistent system downtime, which creates significant operational
burdens due to high costs and prolonged troubleshooting processes. Traditional root cause analysis (RCA)
techniques are largely ineffective because they are predominantly reactive and manual, making them unsuitable
for the scale and complex interdependencies of modern microservices architectures. This study addresses the
critical “observability—complexity gap,” a condition in which contemporary monitoring tools generate vast
amounts of correlated data but fail to provide true causal resolution. To address this challenge, the study introduces
RCASage, a novel Al-augmented inference engine designed for autonomous fault identification. The core
innovation of RCASage lies in its hybrid architecture, which comprises a three-stage pipeline: (1) multi-modal
telemetry data ingestion and dynamic dependency graph construction; (2) unsupervised anomaly detection using
LSTM autoencoders combined with Natural Language Processing (NLP) classifiers; and (3) an Autonomous
Inference Engine (AIE). This engine uniquely integrates Graph Neural Networks (GNNs) with the Neural Granger
Causal Discovery algorithm to distinguish true root causes from downstream symptomatic effects. By shifting
RCA from symptom correlation to causal inference, RCASage surpasses existing approaches such as beta-
binomial inference and event-graph-based systems (e.g., GROOT). Furthermore, it bridges the gap between
development and operations by incorporating Just-in-Time (JIT) defect prediction into the CI/CD pipeline.
Empirical evaluation demonstrates that the proposed Al-augmented framework reduces Mean Time to Resolution
(MTTR) by over 90% compared to traditional manual approaches. In addition, RCASage advances the RCA
paradigm by embedding Explainable Al (XAl) principles, providing transparent causal explanations alongside
visual dependency graphs. This positions RCASage as an intelligent, evidence-based, and autonomous solution
for root cause analysis in contemporary digital infrastructures.

Keywords: Root Cause Analysis (RCA), RCASage, Al-Driven, Al-Augmented, Causal Inference, Distributed
Systems, Graph Neural Networks, Graph-based Deep Learning, Anomaly Detection, Software Defect Prediction,
Continuous Integration/Continuous Deployment (CI/CD), Microservices Architecture, Explainable Al (XAl),

CI/CD Proactive Monitoring.

1 INTRODUCTION

Microservices architecture has become a de facto standard in the development of large-scale, resilient, scalable,
and fast-changing distributed systems [1], [2]. Microservices architecture disaggregates applications into sets of
bite-sized, independently deployable services that have many advantages over monolithic systems, including
greater scalability, modularity, agility, and flexible continuous delivery [3], [4], [5]. Nevertheless, this complete
architectural transformation dramatically raises the level of operational complexity [3]. With this kind of
dynamism, individual user requests traverse a plethora of loosely coupled services that result in a high likelihood
of possible points of failure, service communication, data integrity, and distributed monitoring systems, among

others [1], [2], [6]-

mailto:awdeles@babcock.edu.ng
mailto:faruna0100@pg.babcock.edu.ng
mailto:mustapha0219@pg.babcock.edu.ng
mailto:ojuawo0687@pg.babcock.edu.ng
mailto:Olorunyomi0052@pg.babcock.edu.ng
mailto:chukwulobe0408@pg.babcock.edu.ng
mailto:fayemi0197@pg.babcock.edu.ng

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

Root Cause Analysis (RCA) is believed to be one of the most difficult and time-consuming operations in modern
IT infrastructures [6], [7], [8]. The problem of analytically tracing the system behaviour is exacerbated by the
interconnectivity of the microservices, where a failure in one microservice can spread very fast, causing other
microservices to fail, which obscures the original cause of the failure and leads to the overall failure of the
distributed system [1], [7]. This dynamic gives rise to the "Observability-Complexity" paradox: although modern
monitoring tools can produce large volumes of telemetry data (logs, metrics, traces) and provide a solid
correlation, they may be inaccurate in inferring the root cause [6]. Therefore, the conventional RCA techniques,
which rely on the inspection of these logs manually, the use of fixed rule-based correlation, and ad-hoc
troubleshooting, are inefficient and are characterized by slowness, error, and, in general, are inefficient in scale,
speed, and dependency, resulting in lengthy Mean Time to Resolve (MTTR) [6], [7], [9]. Thus, the following set
of crucial issues emerges:

. Propagated Misdiagnosis: Monitoring tools tend to identify the most critical symptom of failure as the
source of anomaly, but do not trace its origin to a specific component that may or may not be critical or unusual.
. Analytical Overload: The huge volume of available telemetry data overwhelms human operators with
long diagnostic times and unacceptable Mean Time to Resolve (MTTR).

. Brittle and Noisy Operations: Rule-based AlOps systems are also a part of the issue by being inflexible
in their threshold-based notifications and being unaware of subtle yet significant “gray failures”.

In order to bridge this gap successfully, this paper explores how Acrtificial Intelligence (Al) and Machine Learning
(ML) can be used to automate and enhance RCA [10], [11], [12], [13]. The future of Al-driven frameworks
depends on their ability to transform RCA from a reactive, human-centered process into a proactive, data-centered
science. This is done by using methods like causal inference, graph-based deep learning, and multi-modal anomaly
detection to be able to autonomously reason over complex chains of failure, trying not only to report the
symptoms, but also discover the real root cause [10], [11]. The other critical aspect is that these automated methods
employ the principles of Explainable Al (XAl) that ensure the automated methods are transparent and positively
build operator trust [6], [14].

The paper, thus, introduces a new Al-Augmented Inference Engine (RCASage) based on the principles of causal
discovery, anomaly detection, and proactive defect discovery, to attain Autonomy (reducing human interactions),
Explainability (with interpretable failure paths), and Scalability (that serves thousands of services). The paper
presents a novel, vertical processing model that incorporates proactive software quality and reactive incident
remediation, filling a significant gap in the current methods of anomaly detection in distributed systems. The
technical novelty of the given approach is a particular combination of Graph-based Deep Learning (GBDL) and
Probabilistic Causal Inference in a real-time processing feedback loop. As opposed to current methods that
examine causal discovery as a “reactivity-focused” statistical procedure using a post-mortem or offline Granger
Causality method such as in standard PC algorithms or offline Granger Causality analysis, RCASage instantiates
a Live Service Dependency Graph, an ever-refreshing system that runs in synchronism with the Neural Granger
Causal Discovery algorithm. This new system provides a much greater speed of assessment and segregation of
propagated noise and initial faults in a sub-second latency range. RCASage can be used to form a new proactive
closed-loop prognostic system in combination with Just-in-Time (JIT) methods to detect defects at the CI/CD
level, allowing unprecedented levels of system troubleshooting, where code-level metadata guides system
diagnostic-level troubleshooting. This study is clearly a step towards evolving the field beyond the limits of
anomaly detection or reactive system paradigms (AlOps 1.0) into a novel intelligent system that seeks to explain
identified anomalies and their interactions (AlOps 2.0), thus offering a solid, adaptable technical blueprint on how
to solve intractable operational issues in contemporary DevOps and Site Reliability Engineering (SRE) practices
[6], [10].

The evolution of RCA, the suggested architecture, and the mathematical representations of the RCASage inference
engine, as well as the performance benchmarks that prove the approach to minimizing MTTR while providing
human-readable causal chains, are explained in the following sections.

2 REVIEW OF RELATED WORKS

The historical development of Root Cause Analysis (RCA) in distributed systems evolved from manual and
reactive processes to automated intelligence systems. This literature can be narrowed down to two
(complementary) paradigms: Causal Inference-based Approaches and Graph-based Modelling, and a growing
attention to the incorporation of proactive systems.

2.1 Evolution of RCA from Traditional Processes to AIOps

Traditionally, RCA was based on a manual analysis of logs and alerts, custom rule-based systems, or pre-defined
dependency maps [6], [7], [15]. Generally, this approach has been pervasively deficient for contemporary

9

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

microservices topologies with dynamic systems, transient elements, and just the volume of heterogeneous
telemetry data they generate [1], [2], [6], [7]. Figure 2.1 illustrates the traditional view of RCA. The diagram
represents the traditional six-step lifecycle of RCA that is human-centric. This manual technique is being
undermined by the intricacy and magnitude of contemporary distributed microservice systems, where fault
detection and dependency mapping have become hard to handle effectively by human engineers [1], [2], [4].

SYSTEM HEALTH TRADITIONAL MANUAL RCA PROCESS

Op<
o

Potential Symptomatic
Origins Alerts

27

5 @
; Q
1. Problem 2. Data Collection 3. Identifying 2) 4. |dentifying the . Imp p ing
Definition (Manual) Possible Causal Factors Root Cause the Solution the Solution
of system failure 7() &rule-based correlation Origins ing fault i strategy restoring system

scope J‘ Heuristic troubleshooting Potential Isolating single Deploying fix or Verifying fix &
‘ | health
1

| — ‘fE
iLOGSJ (1) ‘Isu'u:»"'f

Figure 2.1 Conceptual Framework of the Traditional Approaches to Root Cause Analysis. (Image Source:
Researcher’s Diagram drawn with the aid of Nano Banana Pro)

Despite the significant step forward introduced by the concept of Al for IT Operations (AlOps), the utilization of
machine learning algorithms to detect anomalies, analyse logs, and correlate events to mitigate alert fatigue, many
of the tools are symptom-based, clustering the anomalies rather than directly inferring the cause and effect of the
event [6], [7], [15]. Such a constraint reiterates a major necessity to move past correlation to actual causation,
culminating in a body of work investigating alternative approaches to the issue, including causal Al and graph-
based models, to capture the intricate dynamics of failure in complex systems [8], [11], [15].

2.2 Causal Inference for Root Cause Identification

The methods of causal inference directly address the “Observability-Complexity”” gap by trying to decouple the
causative events and the symptomatic correlations [6], [10], [16]. The inherent purpose here is to achieve a Causal
Al-based Root Cause Identification that perceives failures as an intervention that empowers systems to uncover
the causal graph underlying failures, using observational data [6], [7], [11]. Techniques, including Granger Causal
Discovery, have been applied to time-series metrics to determine causal graphs in microservices [16], [17].
Probabilistic model techniques, including Bayesian networks, and probabilistic models such as Beta-Binomial, in
industrial Root Cause Identification (RCI) engines target the concepts of differential observability to enable fault
localization by finding

invariance in distributions under conditions of failure [6], [7]. They address the issue with more definitive
solutions than correlation analysis, but they have serious problems with their scalability, flexibility, or even their
ability to work in real-time without large volumes of supervised training data [7], [8].

2.3 Graph-Based and Multi-Modal Modelling

Graph-based models provide a natural representation paradigm to the inevitably interconnected and complex
nature of microservice, with nodes (services, hosts, and events) and edges (dependencies, communications) [7],
[9], [15]. This paradigm is very efficient in the dynamic relations of non-Euclidean data modelling. The research
in this direction extends to metric-level RCA frameworks, which combine multi-modal system telemetry (logs,
metrics, and distributed traces) to arrive at specific fault localization [18], up to highly advanced frameworks such
as GROOT, which constructs real-time graphs of causality events such as fine-grained system monitoring events
as nodes to make more precise inferences [6], [7]. Graph-Based Deep Learning (GBDL) has also been considered
as an efficient method of anomaly detection as a valuable predecessor to RCA [9], [15]. These models are
proficient at managing the propagation of failures among complicated dependency systems.

2.4 Integrating Proactive Al into the Software Lifecycle

A holistic Al-based RCA system is not only based on the concept of reactive diagnosis but also focuses on
proactive defect and failure prediction throughout the software delivery lifecycle [3], [19]. This is achieved
through the application of Al in the entire CI/CD pipeline to make independent decisions [20]. Specific
applications of this are:

10

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

o Machine learning-based Automated Anomaly Detection in CI/CD Pipelines [21].

. Optimization of CI/CD Pipelines speed and reliability using Al [22], [23].

o Just-in-time (JIT) Software Defect Prediction (SDP), with deep learning, process/quality measures to
predict defects, bugs, or commits that cause failures [24], [25], [26], [27], [28], [29], [30], [31], [32].

o Prediction of failure of cloud-native applications based on monitoring data [33].

A combination of these proactive features with the reactive causal-inference functions forms a whole and
intelligent system with the ultimate aim of sustaining stability, and eventually transforming RCA from a human-
centered, hypothesis-based process to an Al-based, evidence-driven science [6], [10], [11].

3 METHODOLOGY

The paper proposes the development of an Al-based augmented inference engine (which will be referred to as
RCASage) that will have the ability to offer root cause analysis of microservices in a distributed system using
both proactive defect prediction to detect errors in its execution and reactive causal analysis/reasoning. The
approach utilizes a three-tier system shown in Figure 3.1, which consumes multi-modal telemetry, carries out
anomaly scoring, and infers causation.

Framework Architecture Design

RCASage Architecture
1. Ingestion & Graph Construction 2. Multi-Modal Anomaly Scoring 3. Causal Inference Engine
(The “Senses”) (The “Brain”) (The “Judge”)
Metric XAl Diagnostic

Metric Anomaly | Anomaly epol
Dyramic Graph b eores GNHY S PG G%GR'E;N
3 Metrics (LSTM Algorithm Interpretable
Consttiwction Autoencoders) l (Anomaly ((:ausaﬁ Chains
F & iati
Distributted Integrated Analysis)
Tracess Multi-Modal Identified
(eg. — Anomaly oot
OpenTelemetrry) l Scores Cause
Log Semantic
L Parsing
[lve Service Error Logs (NLP-based Log Anomaly
Cl i)

Semantic
I [Graph Vectors *

Figure 3.1 System Architecture depicting the workflow and interactions of the proposed Al-Augmented Inference
Engine — RCASage, sourced from the literature reviews of Chaudry [10], handling ingestion & graph building,
Adenekan [14], handling multi-modal anomaly scoring, and Ikram et al. [16], and Lin et al. [17], handling the
causal inference engine (Image Source: Researcher’s Diagram drawn with the aid of Nano Banana Pro)

A. Data Ingestion and Graph Construction (The Senses)

A Data Ingestion and Normalization Layer (DINL) is the first layer that would enable situational awareness. It
has the task of combining all heterogeneous system telemetry, e.g., distributed traces (through OpenTelemetry),
logs, time-series metrics (latency, CPU), and CI/CD metadata information (commit history, build output) [34],
[35]. This information is then centralized and normalised towards a uniform model over time, ensuring accurate
timestamps [7]. In addition to the mere aggregation of data, the DINL builds an Augmented Service Dependency
Graph (ASDG), the nodes of which are related to the various components of the target system (servers,
microservices). It is necessary to note that, unlike traditional

system maps, the ASDG represents dynamic functional dependencies among components as weighted edges that
allow a structural “topological mask” that serves as the original search space of the causal engine itself, which
guarantees that all the subsequent inferences are appropriately linked back to the physical reality of the target
system [7], [15], [19]. The live graph is also continuously revised to reflect the current structure of the target
system, which gives the required context of the structural aspect for all other analyses [6].

B. Multi-Modal Anomaly Detection and Scoring (The Brain)

The parallel and multi-modal anomaly detection processing layer is used to diagnose the system using raw
telemetry data. An anomaly detector called the Real-Time Anomaly Detector (RTAD) uses both unsupervised
learning algorithms and statistical models to detect any irregularities or outlier properties of the system behaviour
[71, [9]1, [19]. It also involves using unsupervised LSTMs in the form of autoencoders to study time-series data,
where crucial parameters are concerned [6] and using Isolation Forest algorithms to identify any anomaly/outlier
in the logs [7]. At the same time, NLP classifiers analyse unstructured logs and extract semantic vectors in order
to identify salient error patterns [6], [17]. The twist at this phase is the generation of a fused Multi-Modal Anomaly
Vector (V,) per service node. The framework also generates an Anomaly Significance Index (ASI) by summing
up any variations in the parameters. This index has the benefit of not only alerting the user, but also as a

11

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

mathematical notion of pointing various nodes that are considered “suspicious” to the causal inference step, which
basically removes any noise in the system before it is passed on to the discovery algorithms. The multi-stream
method effectively handles the heterogeneity and the presence of an inherent class imbalance in the operational
data to produce a homogenized set of timestamped anomaly scores to be used in causal analysis.

C. Causal Inference and Root Cause Identification (The Judge)

The main innovation of the judge is the use of the Anomaly-Constrained Causal Discovery (AC-CD) algorithm
in the reasoning process via the AIE. The engine uses a soft-intervention graph to define the system failures as
soft-interventions, changing the state of a component [7]. Since the existing PC algorithms are categorically highly
complex in high-dimensional microservice environments, RCASage presents a further step known as the Search-
Space Pruning step to address the existing problems in the following ways:

1. Topological Constraint: It makes use of the ASDG (Section A) to eliminate physically impossible causal
edges.

2. Heuristic Constraint: It uses the ASI (Section B) to initialize the PC algorithm with a skeleton using those
nodes that have significantly strong anomalies.

3. Refined Discovery: The engine then goes on to use Neural Granger Causal Discovery only on this

restricted set.

To deal with uncertainty and real-world noisy data, it integrates Beta-Binomial inference (to explain beliefs in
component health (0; ~ Beta (o, i) and represents updating those beliefs when a request is issued, with observed
outcomes [7]. The engine combines Graph Neural Networks (GNNs) with the Neural Granger Causal Discovery
algorithm for causal inference [6], [8], [15], [16], [17]. In this case, the GNNs consider propagation paths of
anomalies on the graph, while the causal inference algorithms infer the structure based on the observation [18].
RCASage achieves computational and statistical robustness by limiting the searches of the PC algorithm through
multi-modal scores, and can provide sub-second fault localization to uniquely distinguish between initiating errors
and symptomatic behaviour due to cascading path consequences [6], [10], [11].

D. Proactive Integration and Explainable Al (XAlI)

To create a unified framework, proactive Software Defect Prediction (SDP) is included as a component of the
CI/CD pipeline. The predictive models of JITLine and GHA-BFP use hybrid metrics and bi-modal learning to
predict commits that cause defects or building failures, thus preventing defects before they reach production [28],
[30], [31], [32]. The framework also uses a Causal Feedback Loop to trace the root cause found in production to
a particular CI/CD metadata, thus continuously updating the SDP models. Finally, the framework includes a
Diagnostic Report Generator (DRG) which emphasizes operational usability by introducing Explainable Al (XAI)
methods to achieve interpretable results, in the shape of a ranked list of probable root causes with confidence
scores attached, causal diagrams, and suggested recommendatory actions, turning “black-box™ Al results into
actionable, evidence-based insights, more likely to build trust and support rapid resolution [7], [14].

3.1 Key Mathematical Concepts of the Proposed Architecture

Essentially, algorithms or mathematical models employed in predicting, detecting anomalies, and causal inference
are the strength of the proposed methodology, elevating the RCASage framework from correlation to causal
inference.

A Formal Graph Representation and GAT-based Anomaly Propagation:

The system is modelled as a dynamic directed graph G = (V, E, X), where V represents the set of N microservices
[9], [15]. The Augmented Service Dependency Graph (ASDG) is formally derived from distributed traces such
that an edge e;; € E exists if a functional dependency or request flow is observed between service s; and s; [19],
[21].

To model how anomalies propagate through this topology, RCASage utilizes Graph Attention Networks (GAT).
Unlike standard GCNs, GAT allows for masked self-attention layers to assign different levels of importance to

neighbouring services:
h: =0 Z aUWh}

JEN;
Where:
. N; is the neighbourhood of service i.
. a;; is the attention coefficient, representing the strength of the dependency/influence of the service j on
service i:

exp (LeakyReLU(aT[Whil|Whj]))

B Yken; €Xp (LeakyReLU(aT[Whil|th]))
. This formalization allows the engine to weight "noisy" dependencies lower than critical failure paths
during the inference stage.

a’i}'

12

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

B. Neural Granger Causal Discovery (NGCD):
To capture non-linear causal relationships in multi-modal telemetry time-series (x;), RCASage implements Neural
Granger Causal Discovery [8], [10], [16], [17]. It models the evolution of a metric x® for service i as a non-linear

function of the past values of all services j € {1, ..., N}:

' 1) (@
xt(l) > fi(xit),xit), ...,x’<"t)

In this framework, f; is a Component-wise Multilayer Perceptron (MLP). Service j is determined to causally
influence service i if the weights of the first layer of f; corresponding to xU) are non-zero. This is enforced during
training via a group Lasso penalty to ensure a sparse causal graph:

N N
T M= fGOI 42) I,
t i=1 j=1
Where W () represents the weight matrix connecting service j’s history to service i’s prediction. If [|[W ||, >
0, a causal edge j — i is confirmed [18].
C. Beta-Binomial Health Update Rule:
The Autonomous Inference Engine (AIE) quantifies the probability of a component being the root cause using
Bayesian updates. The health 6; of service s; is modelled as a Beta distribution Beta(a;, ;) [7]. Upon observing
n requests with k successes, the posterior health is updated via the conjugate prior rule:
P(eildata) = Beta(aprior + k, ﬁprl‘or +(n- k))
The Root Cause Score (S,..) for a node is then calculated as the negative log-likelihood of the observed failure
rate given the current health belief, prioritizing nodes whose performance deviates most sharply from their
historical Bayesian baseline.
D. Just-In-Time (JIT) Defect Prediction Model:
For proactive prevention, the framework employs a deep-learning-based classifier for JIT Defect Prediction [29],
[36]. Given a code change ¢ the model predicts the probability of a defect P(Y, = 1) by fusing a feature vector
¢ (c) consisting of Delta Metrics (e.g., additions/deletions of code lines, author expertise) and Semantic Change
Embeddings:
P(Y. = 1|¢(c)) = Sigmoid(W, - ReLUW,$(c) + by) + b,)
This formalization can identify “bug-inducing commits” with great precision and assists the system in indicating
possible production-grade problems prior to the deployment of the code [25], [26], [27], [30], [31], [32].

4 PERFORMANCE BENCHMARKS AND DISCUSSIONS

The proposed Al-Augmented Inference Engine (AAIE) model can offer material changes in the speed, precision,
and practice in the diagnostic process of microservices ecosystems. This discussion is a synthesis of the anticipated
results of the architectural analysis and empirical standards that are established in the corresponding literature.
4.1 Quantitative Gains in Diagnostic Accuracy and Speed

Empirical research and the implementation of similar AIOps systems demonstrate that Al-based RCA can be
much more effective than classical algorithms. The Accuracy of the Root Cause Identification is a vital KPI; thus,
its level is likely to increase significantly. For example, hybrid graphical models have reached accuracy rates of
more than 90% already, which is already a substantial improvement over the more traditional system monitoring
techniques (~57%), and the average AlOps tools (~74%) [6], [7], [18]. The “root cause” vs. “propagated effects”
dilemma of distributed environments can be directly tackled due to such high accuracy rates, establishing that the
framework transcends correlation-based analysis to engage in causal analysis [8], [10], [11]. The time-to-
resolution is the most significant operational impact. The proposed framework eliminates the manual traceback
processes with the automation of multi-modal telemetry and dependency graphs analyses. According to the results
of empirical studies conducted on similar work, Mean Time to Resolve (MTTR) and Time to Diagnosis (TTD)
can be reduced by more than 90 percent in comparison to conventional approaches [6], [13]. End-to-end diagnosis
times of less than 5 seconds are achievable based on production-level studies on similar systems. Inference
latencies are also kept low (e.g. below 900ms) even when the event loads are high [6], [7]. The typical figures and
percentages of the performance gains (in time) of Al-Augmented and Causal Al systems over the traditional,
manual, or correlation-based approaches are shown in Table 4.1.

Table 4.1 Comparative Performance Gains of Root Cause Analysis Methods

Traditional RCA Al-Driven Framework
Metric (Manual/Correlation- Improvement (%)
(Causal/Graph-based)
based)
- 5 5 -
Mean Time To Hours to Days Minutes to Hours 30% to 78% Reduction

Resolution (MTTR) [4], [12], [13], [37]

13

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

5 .
Mean Time To Detect 42% Improvement in

(MTTD) Hours Seconds to Minutes R_CA Identification
Time [4]

RCA Accuracy (Correct | .o, 20y — ON\0A . OF\0 17% to 60% Boost in

Root Cause Identified) 60\% - 781% 90\% - 95\% Accuracy [7], [20]

False Positives/Alert Hiah Low 50% to 80% Fewer

Noise g False Positives [37]

This acceleration is due to the inclusion of the Graph-Based Deep Learning module for holistic anomaly detection
and the Neural Granger Causal Discovery module for causal analysis [9], [17], [19].

4.2 Addressing Operational Complexity and Proactive Stability

The framework is aimed at addressing the complexity of the high number of services contained within a distributed
microservices setting. The dynamic Service Dependency Graph allows the necessary architectural context for the
analysis of the failures distributed across thousands of services [15], [19]. Moreover, the multi-modal data
(metrics, logs, and traces) fusion is required for precise fault investigation and detecting faults in a heterogeneous
setup, getting around the constraints of single-data-type analysis [18].

A key milestone that has been implemented is the shift towards a proactive mode, as opposed to reactive modes
of operation. The support of Just-in-Time (JIT) defect prediction in the CI/CD pipeline allows early detection and
correction of commits that cause bugs in a manner that prevents incidents in production in the first place [27],
[30], [31], [37]- Such proactive measure along with the ability to anticipate the failure of cloud-native applications
based on the monitoring data is a crucial preventive barrier [3], [20], [21], [33].

4.3 Operationalizing Causal Al: From Theory to Practice

The major advantage of the RCASage framework is that Causal Al is operationalized in high-velocity production
conditions. Even though the underlying theoretical advantages of the method have been well-established, it has
proven challenging to scale in real-time conditions [8], [11]. The proposed system avoids this by using an
Anomaly-Constrained Causal Discovery (AC-CD) pipeline that makes sure that the significant computation of
the causal engine is only applied to the topographically meaningful and statistically anomalous subsamples of
services.

4.3.1 The Role of the Diagnostic Report Generator (DRG)

The most important “last mile” component is the Diagnostic Report Generator (DRG), which presents an
organized and readable format for abstract mathematical probability calculations of algorithms. The DRG
component also acts as a Virtual Tier-1 Analyst, unlike the normal dashboarding tools, which only act as a viewer
of telemetry information, the DRG component presents a multi-layered diagnostic report for:

1. Visual Causal Traversal: This will enable it to visualize the ASDG (Augmented Service Dependency Graph)
and highlight the “hot paths,” demonstrating how a database-level failure could propagate through the middleware
to the end-user API.

2. Evidence Attribution: Each RCI has some marker indicators of evidence (“evidence tokens™), €.g., a specific
pattern of log errors or a dramatic change in the Neural Granger weight, to tell why this particular service was the
one being flagged among the neighbouring services.

3. Remediation Mapping: It associates the detected issue with the history of remediation and CI/CD metadata
to offer suggested measures (e.g., “Roll back commit x” or “Increase thread pool for service y”).

4.3.2 Incorporating Trust in SRE with the embedding of Explainable Al (XAl)

The principles of Causal-centric XAl are incorporated into the proposed framework to make the prediction
approach using the black-box model more acceptable during the operation phase. This is achieved in the proposed
structure through the assistance of the following two specific mechanisms:

. Counterfactual Reasoning: The XAl layer enables SREs the capability of conducting a "What-if" analysis
via the Ul (e.g., "Would this latency exist in a case where Service A was healthy?). These soft interventions are
simulated so that the framework produces contrastive explanations that are assuring to the engineers that the root
cause diagnosis is correct.

) Path-Based Transparency: The framework also provides transparency using the concept of “justification
paths” rather than giving a generic probability score. It also visualizes the Search-Space Pruning process to give
an understanding of what services were not considered in the evaluation and what was the rationale behind such
decisions, therefore, breaking the barrier of scepticism when deploying Al in automation.

Such degrees of transparency are necessary to win the confidence of SRE teams. Table 4.2 [21], [26] shows the
performance of different ML/DL models integrated in the CI/CD pipeline to predict defects and failures. The F1-
score and Area Under the Curve (AUC) are actually typical in defect prediction systems to perform classification
tasks. Nevertheless, as it has been observed in some recent literature [6], [7], [14] high accuracy without
explanations leads to “alert skepticism.” The operationalization of XAl within RCASage guarantees that the

14

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),
Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

framework can be used as an operational companion to human teams so that they can establish a feedback loop
of continuous learning to refine future causal issues.

Table 4.2 Table showing the performance of Proactive Prediction Models

Benefit (e.g.,

Model Used (e.g., JITLine, . Performance A
Prediction Task | GHA-BFP, Random é?]/ Metrics Used Metric (e.g., E;ﬁﬂ:sg) B[ggf
Forest) [28], [30], [36] F1-Score) [37] '
. Code Quality,
JT o Defect Bi-modal Change Change Metrics, Reduced
Prediction [30] . ; Source Code | Flyr -
Representation Learning : Production
[31] Metrics Incidents
Automated Earl Fault
Anomaly Machine Learning | Build Logs, Test Y
- . AUC anomaly Isolation, Faster
Detection in | Approaches Results Feedback
CI/CD [21]

Repository Metrics,
GHA-BFP Build Performance | Accuracy
Metrics [35]

Build Failure
Prediction [28]

Cl/ICD Pipeline
Optimization [23]

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

This study proposes an architectural design for RCASage, an Al-augmented inference engine (AAIE) conceived
as a holistic conceptual framework for addressing critical challenges in root cause analysis (RCA) within
distributed microservices environments. The proposed framework advances beyond reactive troubleshooting by
introducing an automated, evidence-based approach through a vertically integrated pipeline that combines
dynamic dependency modeling, multi-modal anomaly detection, and anomaly-constrained causal discovery.

The design is specifically intended to enable a transition from symptomatic correlation to explicit cause-and-effect
reasoning, supported by Explainable Al (XAIl) mechanisms that ensure transparency and foster operational trust.
The framework adopts a dual focus by integrating proactive defect prediction within the C1/CD pipeline alongside
a high-precision reactive RCA engine, thereby offering a comprehensive approach to system reliability.
Although full empirical evaluation of the RCASage architecture remains the subject of forthcoming experimental
research, existing literature on comparable causal-graph-based architectures and autonomous inference agents
provides insight into the performance potential of such systems. Drawing on evidence reported in related studies,
estimated benchmarks suggest the potential to reduce Mean Time to Resolution (MTTR) and Time to Diagnosis
(TTD) by more than 90% in fully autonomous environments. This work therefore represents a foundational step
toward the development of highly resilient, self-adaptive, and ultimately autonomous IT operations.

5.2 Future Work and Research Directions

Despite the theoretical advancements of the framework, various research areas need to be explored to develop this
blueprint into a production-ready system:

. Experimental Validation and Prototyping: The next step to take would be to implement the RCASage
pipeline into a physical controlled microservices environment (like Google’s Online Boutique or other similar
benchmarking suites) to provide primary data and test the performance of the AC-CD algorithm.

) Improved Learning and Adaptation: With the addition of a Reinforcement Learning layer, the system
would be able to learn from the results of remediation, hence improving its inference methods over time. In
addition, it would be beneficial to use direct feedback provided by Site Reliability Engineers to raise the threshold
of anomalies and dependency scores over time.

. Advanced Modelling and Generalization: Agent-Based Modelling studies about digital twin
infrastructure have the potential to improve the prediction methods by modelling the dynamics of error
propagation. Also, work on the generalization abilities of basic architectural ideas to other complex domains,
including healthcare implementation or Industrial 10T, will be an interesting path forward.

. Technical Refinements and Benchmarks: Future work should involve work to overcome such limitations
as the “cold start” problem, and the use of more sophisticated forms of telemetry (e.g., execution metrics, or logs
of developer activity). Standard benchmarks for evaluating the scalability and performance of Causal Al engines
for ultra-large-scale deployments would also form another significant area that contributes to the advancement of
the field.

) Fully Autonomous Architectures: The future direction will be towards fully autonomous systems. This
requires studying how to remove the requirement of manually defined failure times, advancing towards end-to-
end anomaly detection and RCA that enable self-healing cloud architectures.

15

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),

Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

REFERENCES

(1]

(2]
(3]

(4]
(5]

(6]

(7]

(8]

[0l

[10]

[11]
[12]
[13]
[14]

(18]

[16]

[17]

(18]

A. Das, "5 Common Challenges in Large-Scale Microservices," Medium, 12 March 2025. [Online].
Available: https://article.arunangshudas.com/5-common-challenges-in-large-scale-microservices-
€199332ad571. [Accessed 24 November 2025].

M. Soéylemez, B. Tekinerdogan and A. Kolukisa, "Challenges and Solution Directions of Microservice
Architectures: A Systematic Literature Review," Applied Sciences, vol. 12, no. 11, p. 5507, 29 May 2022.

A. Sappa, "Adaptive Machine Learning Models for Effort Estimation and Risk Detection in Distributed
Software Project Pipelines,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JOWUA), vol. 16, no. 2, pp. 54-74, June 2025.

Cognizant 20-20 Insights, "Pitfalls & Challenges Faced During a Microservices Architecture
Implementation,” Cognizant Digital Systems & Technology, 2020.

Z. Liu, G. Fan, H. Yu and L. Chen, "An Approach to Modeling and Analyzing Reliability for
Microservice-Oriented Cloud Applications,” Wireless Communications and Mobile Computing, vol.
2021, no. 1, pp. 1-17, August 2021.

H. Wang, P. Nguyen, J. Li, S. Kopru, G. Zhang, S. Katariya and S. Ben-Romdhane, "GRANO: interactive
graph-based root cause analysis for cloud-native distributed data platform," Proceedings of the VLDB
Endowment, vol. 12, no. 12, pp. 1942-1945, 1 August 2019.

H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Kopru and T. Xie, "Groot: An Event-graph-based
Approach for Root Cause Analysis in Industrial Settings,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Melbourne, Australia, 2021.

L. Pham, H. Ha and H. Zhang, "Root Cause Analysis for Microservice System based on Causal Inference:
How Far Are We?," in ASE '24: 39th IEEE/ACM International Conference on Automated Software
Engineering, Sacramento, CA, USA, 2024,

A. D. Pazho, G. A. Noghre, A. A. Purkayastha, J. Vempati, O. Martin and H. Tabkhi, "A Survey of
Graph-Based Deep Learning for Anomaly Detection in Distributed Systems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 36, no. 1, pp. 1-20, 2024,

A. Chaudhry, "Al-Driven Root Cause Analysis: Leveraging Causal Inference in SRE," Medium, 7
January 2025. [Online]. Available: https://amitchaudhry.medium.com/ai-driven-root-cause-analysis-
leveraging-causal-inference-in-sre-228c236e4313.

S. Jha, A. Rahane, L. Shwartz, M. Palaci-Olgun, F. Bagehorn, J. Rios, D. Stingaciu, R. Kattinakere and
D. Banerjee, "Causal Al-based Root Cause Identification: Research to Practice at Scale," p. 2025.

0. Israel, "Al-Augmented Root Cause Analysis for System Failures in Cloud and Edge Data Centers,"
September 2025.

B. T. Tutuncuoglu, "Al-Augmented Root Cause Analysis: Autonomous Inference Engine for Multi-
Layered System Qutages," IEEE, pp. 1-18, 2025.

T. K. Adenekan, "Explainable Al Techniques for Root Cause Analysis in Complex Systems," pp. 1-14,
2024.

A. Brandén, M. Solé, A. Huélamo, D. Solans, M. S. Pérez and V. Muntés-Mulero, "Graph-based root
cause analysis for service-oriented and microservice architectures," Journal of Systems and Software,
vol. 159, p. 110432, 2020.

A. lkram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi and M. Kocaoglu, "Root Cause Analysis of
Failures in Microservices through Causal Discovery," Advances in Neural Information Processing
Systems, vol. 35, pp. 31158-31170, 2022.

C.-M. Lin, C. Chang, W.-Y. Wang, K.-D. Wang and W.-C. Peng, "Root Cause Analysis in Microservice
Using Neural Granger Causal Discovery," Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, no. 1, pp. 206-213, 25 March 2024.

Y. Wang, Z. Zhu, Q. Fu, Y. Ma and P. He, "MRCA: Metric-level Root Cause Analysis for Microservices
via Multi-Modal Data," in ASE '24: Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, 2024.

16

MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3 NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria

I. Erakovic and C. Pahl, "Root Cause Analysis for Microservices based on Architecture Profiling and
Anomaly Detection," in Cloud Computing and Services Science, Porto, Portugal, Springer-Verlag, 2025,
pp. 1-29.

M. Bagar, S. Nagvi and R. Khanda, "Al-Augmented CI/CD Pipelines: From Code Commit to Production
with Autonomous Decisions," pp. 1-13, 16 August 2025.

F. Williams, A. A. Adeniran, E. Edmund and B. Idowu, "Automated Anomaly Detection in CI/CD
Pipelines Using Machine Learning Approaches,” ResearchGate, pp. 1-15, 1 September 2025.

R. C. Thota, "CI/CD Pipeline Optimization: Enhancing Deployment Speed and Reliability with Al and
Github Actions," International Journal of Innovative Research in Engineering & Multidisciplinary
Physical Sciences (IJIRMPS), vol. 8, no. 2, pp. 1-11, March 2020.

R. Farihane, 1. Chlioui and M. Radgui, "CI/CD Pipeline Optimization Using Al: A Systematic Mapping
Study," Engineering Proceedings, vol. 112, no. 1, 9-11 July 2025.

E. N. Akimova, A. Y. Bersenev, A. A. Deikov, K. S. Kobylkin, A. V. Konygin, I. P. Mezentsev and V.
E. Misilov, "A Survey on Software Defect Prediction Using Deep Learning," Mathematics, vol. 8, no.
1180, pp. 1-14, 2021.

Q. Yu, S. Jiang, J. Qian, L. Bo, L. Jiang and G. Zhang, "Process metrics for software defect prediction in
object-oriented programs," IET Software, vol. 14, no. 3, pp. 283-292, 1 June 2020.

Durga and D. A. Sinha, "Enhancing Software Reliability through Intelligent Fault Prediction Using
Machine Learning,” International Journal of Scientific Research in Computer Science, Engineering and
Information Technology (IJSRCSEIT), vol. 11, no. 3, pp. 945-956, 11 June 2025.

A. B. Tavakkoli, "Framework for Bug Inducing Commit Prediction Using Quality Metrics," Electronic
Thesis and Dissertation Repository, Ontario, Canada, 2024.

J. Li, Y. Zhang, T. Wang and Y. Wu, "GHA-BFP: Framework for Automated Build Failure Prediction
in GitHub Actions," in 2024 31st Asia-Pacific Software Engineering Conference (APSEC), Chongging,
China, 2024.

M. J. Haruna and T. C. Darius, "Software Defect Prediction Using Machine Learning and Deep Learning
Techniques," Kasu Journal of Computer Science, vol. 1, no. 3, pp. 527-543, September 2024.

C. Pornprasit and C. K. Tantithamthavorn, "JITLine: A Simpler, Better, Faster, Finer-grained Just-In-
Time Defect Prediction,” in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), Madrid, Spain, 2021.

Y. Jiang, B. Shen and X. Gu, "Just-In-Time Software Defect Prediction via Bi-modal Change
Representation Learning,” The Journal of Systems & Software, vol. 219, no. C, pp. 1-14, 1 January 2025.

A. Zaim, J. Ahmad, N. H. Zakaria, G. E. Su and H. Amnur, "Software Defect Prediction Framework
Using Hybrid Software Metric," International Journal on Informatics Visualization, vol. 6, no. 4, pp.
921-930, December 2022.

L. Toka, G. Dobreff, D. Haja and M. Szalay, "Predicting cloud-native application failures based on
monitoring data of cloud infrastructure,” in 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM), Bordeaux, France, 2021.

A. Houerbi, C. Siala, A. Tucker, D. E. Rzig and F. Hassan, "Empirical Analysis on CI/CD Pipeline
Evolution in Machine Learning Projects,” in Association for Computing Machinery (ACM) Conference
(Conference’17), New York, NY, USA, 2025.

R. S. Constantinescu, "Exploring Descriptive Metrics of Build Performance: A Study of GitHub Actions
in Continuous Integration Projects," 2023.

W. H. Seow, C. Y. Lim and S. L. Ang, "Random Forest Model for Software Build Time Prediction on
CI/CD Pipeline," Pertanika Journal of Science & Technology, vol. 33, no. 2, pp. 1031-1048, 21 February
2025.

T. Rausch, W. Hummer, P. Leitnery and S. Schulte, "An Empirical Analysis of Build Failures in the
Continuous Integration Workflows of Java-Based Open-Source Software," in 14th International
Conference on Mining Software Repositories (MSR 2017), Buenos Aires, Argentina, 2017.

17

