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ABSTRACT 

Multi-layered IT systems are characterized by persistent system downtime, which creates significant operational 

burdens due to high costs and prolonged troubleshooting processes. Traditional root cause analysis (RCA) 

techniques are largely ineffective because they are predominantly reactive and manual, making them unsuitable 

for the scale and complex interdependencies of modern microservices architectures. This study addresses the 

critical “observability–complexity gap,” a condition in which contemporary monitoring tools generate vast 

amounts of correlated data but fail to provide true causal resolution. To address this challenge, the study introduces 

RCASage, a novel AI-augmented inference engine designed for autonomous fault identification. The core 

innovation of RCASage lies in its hybrid architecture, which comprises a three-stage pipeline: (1) multi-modal 

telemetry data ingestion and dynamic dependency graph construction; (2) unsupervised anomaly detection using 

LSTM autoencoders combined with Natural Language Processing (NLP) classifiers; and (3) an Autonomous 

Inference Engine (AIE). This engine uniquely integrates Graph Neural Networks (GNNs) with the Neural Granger 

Causal Discovery algorithm to distinguish true root causes from downstream symptomatic effects. By shifting 

RCA from symptom correlation to causal inference, RCASage surpasses existing approaches such as beta-

binomial inference and event-graph-based systems (e.g., GROOT). Furthermore, it bridges the gap between 

development and operations by incorporating Just-in-Time (JIT) defect prediction into the CI/CD pipeline. 

Empirical evaluation demonstrates that the proposed AI-augmented framework reduces Mean Time to Resolution 

(MTTR) by over 90% compared to traditional manual approaches. In addition, RCASage advances the RCA 

paradigm by embedding Explainable AI (XAI) principles, providing transparent causal explanations alongside 

visual dependency graphs. This positions RCASage as an intelligent, evidence-based, and autonomous solution 

for root cause analysis in contemporary digital infrastructures. 

 

Keywords: Root Cause Analysis (RCA), RCASage, AI-Driven, AI-Augmented, Causal Inference, Distributed 

Systems, Graph Neural Networks, Graph-based Deep Learning, Anomaly Detection, Software Defect Prediction, 

Continuous Integration/Continuous Deployment (CI/CD), Microservices Architecture, Explainable AI (XAI), 

CI/CD Proactive Monitoring. 

 

1 INTRODUCTION 

Microservices architecture has become a de facto standard in the development of large-scale, resilient, scalable, 

and fast-changing distributed systems [1], [2]. Microservices architecture disaggregates applications into sets of 

bite-sized, independently deployable services that have many advantages over monolithic systems, including 

greater scalability, modularity, agility, and flexible continuous delivery [3], [4], [5]. Nevertheless, this complete 

architectural transformation dramatically raises the level of operational complexity [3]. With this kind of 

dynamism, individual user requests traverse a plethora of loosely coupled services that result in a high likelihood 

of possible points of failure, service communication, data integrity, and distributed monitoring systems, among 

others [1], [2], [6]. 
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Root Cause Analysis (RCA) is believed to be one of the most difficult and time-consuming operations in modern 

IT infrastructures [6], [7], [8]. The problem of analytically tracing the system behaviour is exacerbated by the 

interconnectivity of the microservices, where a failure in one microservice can spread very fast, causing other 

microservices to fail, which obscures the original cause of the failure and leads to the overall failure of the 

distributed system [1], [7]. This dynamic gives rise to the "Observability-Complexity" paradox: although modern 

monitoring tools can produce large volumes of telemetry data (logs, metrics, traces) and provide a solid 

correlation, they may be inaccurate in inferring the root cause [6]. Therefore, the conventional RCA techniques, 

which rely on the inspection of these logs manually, the use of fixed rule-based correlation, and ad-hoc 

troubleshooting, are inefficient and are characterized by slowness, error, and, in general, are inefficient in scale, 

speed, and dependency, resulting in lengthy Mean Time to Resolve (MTTR) [6], [7], [9]. Thus, the following set 

of crucial issues emerges: 

 Propagated Misdiagnosis: Monitoring tools tend to identify the most critical symptom of failure as the 

source of anomaly, but do not trace its origin to a specific component that may or may not be critical or unusual.  

 Analytical Overload: The huge volume of available telemetry data overwhelms human operators with 

long diagnostic times and unacceptable Mean Time to Resolve (MTTR). 

 Brittle and Noisy Operations: Rule-based AIOps systems are also a part of the issue by being inflexible 

in their threshold-based notifications and being unaware of subtle yet significant “gray failures”. 

In order to bridge this gap successfully, this paper explores how Artificial Intelligence (AI) and Machine Learning 

(ML) can be used to automate and enhance RCA [10], [11], [12], [13]. The future of AI-driven frameworks 

depends on their ability to transform RCA from a reactive, human-centered process into a proactive, data-centered 

science. This is done by using methods like causal inference, graph-based deep learning, and multi-modal anomaly 

detection to be able to autonomously reason over complex chains of failure, trying not only to report the 

symptoms, but also discover the real root cause [10], [11]. The other critical aspect is that these automated methods 

employ the principles of Explainable AI (XAI) that ensure the automated methods are transparent and positively 

build operator trust [6], [14]. 

 

The paper, thus, introduces a new AI-Augmented Inference Engine (RCASage) based on the principles of causal 

discovery, anomaly detection, and proactive defect discovery, to attain Autonomy (reducing human interactions), 

Explainability (with interpretable failure paths), and Scalability (that serves thousands of services). The paper 

presents a novel, vertical processing model that incorporates proactive software quality and reactive incident 

remediation, filling a significant gap in the current methods of anomaly detection in distributed systems. The 

technical novelty of the given approach is a particular combination of Graph-based Deep Learning (GBDL) and 

Probabilistic Causal Inference in a real-time processing feedback loop. As opposed to current methods that 

examine causal discovery as a “reactivity-focused” statistical procedure using a post-mortem or offline Granger 

Causality method such as in standard PC algorithms or offline Granger Causality analysis, RCASage instantiates 

a Live Service Dependency Graph, an ever-refreshing system that runs in synchronism with the Neural Granger 

Causal Discovery algorithm. This new system provides a much greater speed of assessment and segregation of 

propagated noise and initial faults in a sub-second latency range. RCASage can be used to form a new proactive 

closed-loop prognostic system in combination with Just-in-Time (JIT) methods to detect defects at the CI/CD 

level, allowing unprecedented levels of system troubleshooting, where code-level metadata guides system 

diagnostic-level troubleshooting. This study is clearly a step towards evolving the field beyond the limits of 

anomaly detection or reactive system paradigms (AIOps 1.0) into a novel intelligent system that seeks to explain 

identified anomalies and their interactions (AIOps 2.0), thus offering a solid, adaptable technical blueprint on how 

to solve intractable operational issues in contemporary DevOps and Site Reliability Engineering (SRE) practices 

[6], [10]. 

The evolution of RCA, the suggested architecture, and the mathematical representations of the RCASage inference 

engine, as well as the performance benchmarks that prove the approach to minimizing MTTR while providing 

human-readable causal chains, are explained in the following sections. 

 

2 REVIEW OF RELATED WORKS 

The historical development of Root Cause Analysis (RCA) in distributed systems evolved from manual and 

reactive processes to automated intelligence systems. This literature can be narrowed down to two 

(complementary) paradigms: Causal Inference-based Approaches and Graph-based Modelling, and a growing 

attention to the incorporation of proactive systems. 

2.1 Evolution of RCA from Traditional Processes to AIOps 

Traditionally, RCA was based on a manual analysis of logs and alerts, custom rule-based systems, or pre-defined 

dependency maps [6], [7], [15]. Generally, this approach has been pervasively deficient for contemporary 
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microservices topologies with dynamic systems, transient elements, and just the volume of heterogeneous 

telemetry data they generate [1], [2], [6], [7]. Figure 2.1 illustrates the traditional view of RCA. The diagram 

represents the traditional six-step lifecycle of RCA that is human-centric. This manual technique is being 

undermined by the intricacy and magnitude of contemporary distributed microservice systems, where fault 

detection and dependency mapping have become hard to handle effectively by human engineers [1], [2], [4].  

 
Figure 2.1 Conceptual Framework of the Traditional Approaches to Root Cause Analysis. (Image Source: 

Researcher’s Diagram drawn with the aid of Nano Banana Pro) 

 

Despite the significant step forward introduced by the concept of AI for IT Operations (AIOps), the utilization of 

machine learning algorithms to detect anomalies, analyse logs, and correlate events to mitigate alert fatigue, many 

of the tools are symptom-based, clustering the anomalies rather than directly inferring the cause and effect of the 

event [6], [7], [15]. Such a constraint reiterates a major necessity to move past correlation to actual causation, 

culminating in a body of work investigating alternative approaches to the issue, including causal AI and graph-

based models, to capture the intricate dynamics of failure in complex systems [8], [11], [15]. 

2.2 Causal Inference for Root Cause Identification 

The methods of causal inference directly address the “Observability-Complexity” gap by trying to decouple the 

causative events and the symptomatic correlations [6], [10], [16]. The inherent purpose here is to achieve a Causal 

AI-based Root Cause Identification that perceives failures as an intervention that empowers systems to uncover 

the causal graph underlying failures, using observational data [6], [7], [11]. Techniques, including Granger Causal 

Discovery, have been applied to time-series metrics to determine causal graphs in microservices [16], [17]. 

Probabilistic model techniques, including Bayesian networks, and probabilistic models such as Beta-Binomial, in 

industrial Root Cause Identification (RCI) engines target the concepts of differential observability to enable fault 

localization by finding 

invariance in distributions under conditions of failure [6], [7]. They address the issue with more definitive 

solutions than correlation analysis, but they have serious problems with their scalability, flexibility, or even their 

ability to work in real-time without large volumes of supervised training data [7], [8]. 

2.3 Graph-Based and Multi-Modal Modelling 

Graph-based models provide a natural representation paradigm to the inevitably interconnected and complex 

nature of microservice, with nodes (services, hosts, and events) and edges (dependencies, communications) [7], 

[9], [15]. This paradigm is very efficient in the dynamic relations of non-Euclidean data modelling. The research 

in this direction extends to metric-level RCA frameworks, which combine multi-modal system telemetry (logs, 

metrics, and distributed traces) to arrive at specific fault localization [18], up to highly advanced frameworks such 

as GROOT, which constructs real-time graphs of causality events such as fine-grained system monitoring events 

as nodes to make more precise inferences [6], [7]. Graph-Based Deep Learning (GBDL) has also been considered 

as an efficient method of anomaly detection as a valuable predecessor to RCA [9], [15]. These models are 

proficient at managing the propagation of failures among complicated dependency systems. 

2.4 Integrating Proactive AI into the Software Lifecycle 

A holistic AI-based RCA system is not only based on the concept of reactive diagnosis but also focuses on 

proactive defect and failure prediction throughout the software delivery lifecycle [3], [19]. This is achieved 

through the application of AI in the entire CI/CD pipeline to make independent decisions [20]. Specific 

applications of this are: 
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 Machine learning-based Automated Anomaly Detection in CI/CD Pipelines [21]. 

 Optimization of CI/CD Pipelines speed and reliability using AI [22], [23]. 

 Just-in-time (JIT) Software Defect Prediction (SDP), with deep learning, process/quality measures to 

predict defects, bugs, or commits that cause failures [24], [25], [26], [27], [28], [29], [30], [31], [32]. 

 Prediction of failure of cloud-native applications based on monitoring data [33]. 

A combination of these proactive features with the reactive causal-inference functions forms a whole and 

intelligent system with the ultimate aim of sustaining stability, and eventually transforming RCA from a human-

centered, hypothesis-based process to an AI-based, evidence-driven science [6], [10], [11]. 

 

3 METHODOLOGY 

The paper proposes the development of an AI-based augmented inference engine (which will be referred to as 

RCASage) that will have the ability to offer root cause analysis of microservices in a distributed system using 

both proactive defect prediction to detect errors in its execution and reactive causal analysis/reasoning. The 

approach utilizes a three-tier system shown in Figure 3.1, which consumes multi-modal telemetry, carries out 

anomaly scoring, and infers causation. 

Framework Architecture Design 

 
Figure 3.1 System Architecture depicting the workflow and interactions of the proposed AI-Augmented Inference 

Engine – RCASage, sourced from the literature reviews of Chaudry [10], handling ingestion & graph building, 

Adenekan [14], handling multi-modal anomaly scoring, and Ikram et al. [16], and Lin et al. [17], handling the 

causal inference engine (Image Source: Researcher’s Diagram drawn with the aid of Nano Banana Pro) 

A. Data Ingestion and Graph Construction (The Senses) 

A Data Ingestion and Normalization Layer (DINL) is the first layer that would enable situational awareness. It 

has the task of combining all heterogeneous system telemetry, e.g., distributed traces (through OpenTelemetry), 

logs, time-series metrics (latency, CPU), and CI/CD metadata information (commit history, build output) [34], 

[35]. This information is then centralized and normalised towards a uniform model over time, ensuring accurate 

timestamps [7]. In addition to the mere aggregation of data, the DINL builds an Augmented Service Dependency 

Graph (ASDG), the nodes of which are related to the various components of the target system (servers, 

microservices). It is necessary to note that, unlike traditional 

system maps, the ASDG represents dynamic functional dependencies among components as weighted edges that 

allow a structural “topological mask” that serves as the original search space of the causal engine itself, which 

guarantees that all the subsequent inferences are appropriately linked back to the physical reality of the target 

system [7], [15], [19]. The live graph is also continuously revised to reflect the current structure of the target 

system, which gives the required context of the structural aspect for all other analyses [6]. 

B. Multi-Modal Anomaly Detection and Scoring (The Brain) 

The parallel and multi-modal anomaly detection processing layer is used to diagnose the system using raw 

telemetry data. An anomaly detector called the Real-Time Anomaly Detector (RTAD) uses both unsupervised 

learning algorithms and statistical models to detect any irregularities or outlier properties of the system behaviour 

[7], [9], [19]. It also involves using unsupervised LSTMs in the form of autoencoders to study time-series data, 

where crucial parameters are concerned [6] and using Isolation Forest algorithms to identify any anomaly/outlier 

in the logs [7]. At the same time, NLP classifiers analyse unstructured logs and extract semantic vectors in order 

to identify salient error patterns [6], [17]. The twist at this phase is the generation of a fused Multi-Modal Anomaly 

Vector (𝑉𝑎) per service node. The framework also generates an Anomaly Significance Index (ASI) by summing 

up any variations in the parameters. This index has the benefit of not only alerting the user, but also as a 
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mathematical notion of pointing various nodes that are considered “suspicious” to the causal inference step, which 

basically removes any noise in the system before it is passed on to the discovery algorithms. The multi-stream 

method effectively handles the heterogeneity and the presence of an inherent class imbalance in the operational 

data to produce a homogenized set of timestamped anomaly scores to be used in causal analysis. 

C. Causal Inference and Root Cause Identification (The Judge) 

The main innovation of the judge is the use of the Anomaly-Constrained Causal Discovery (AC-CD) algorithm 

in the reasoning process via the AIE. The engine uses a soft-intervention graph to define the system failures as 

soft-interventions, changing the state of a component [7]. Since the existing PC algorithms are categorically highly 

complex in high-dimensional microservice environments, RCASage presents a further step known as the Search-

Space Pruning step to address the existing problems in the following ways: 

1. Topological Constraint: It makes use of the ASDG (Section A) to eliminate physically impossible causal 

edges. 

2. Heuristic Constraint: It uses the ASI (Section B) to initialize the PC algorithm with a skeleton using those 

nodes that have significantly strong anomalies. 

3. Refined Discovery: The engine then goes on to use Neural Granger Causal Discovery only on this 

restricted set. 

To deal with uncertainty and real-world noisy data, it integrates Beta-Binomial inference (to explain beliefs in 

component health (θᵢ ~ Beta (αᵢ, βᵢ)) and represents updating those beliefs when a request is issued, with observed 

outcomes [7]. The engine combines Graph Neural Networks (GNNs) with the Neural Granger Causal Discovery 

algorithm for causal inference [6], [8], [15], [16], [17]. In this case, the GNNs consider propagation paths of 

anomalies on the graph, while the causal inference algorithms infer the structure based on the observation [18]. 

RCASage achieves computational and statistical robustness by limiting the searches of the PC algorithm through 

multi-modal scores, and can provide sub-second fault localization to uniquely distinguish between initiating errors 

and symptomatic behaviour due to cascading path consequences [6], [10], [11].  

D. Proactive Integration and Explainable AI (XAI) 

To create a unified framework, proactive Software Defect Prediction (SDP) is included as a component of the 

CI/CD pipeline. The predictive models of JITLine and GHA-BFP use hybrid metrics and bi-modal learning to 

predict commits that cause defects or building failures, thus preventing defects before they reach production [28], 

[30], [31], [32]. The framework also uses a Causal Feedback Loop to trace the root cause found in production to 

a particular CI/CD metadata, thus continuously updating the SDP models. Finally, the framework includes a 

Diagnostic Report Generator (DRG) which emphasizes operational usability by introducing Explainable AI (XAI) 

methods to achieve interpretable results, in the shape of a ranked list of probable root causes with confidence 

scores attached, causal diagrams, and suggested recommendatory actions, turning “black-box” AI results into 

actionable, evidence-based insights, more likely to build trust and support rapid resolution [7], [14]. 

3.1 Key Mathematical Concepts of the Proposed Architecture 

Essentially, algorithms or mathematical models employed in predicting, detecting anomalies, and causal inference 

are the strength of the proposed methodology, elevating the RCASage framework from correlation to causal 

inference. 

A. Formal Graph Representation and GAT-based Anomaly Propagation: 

The system is modelled as a dynamic directed graph 𝐺 =  (𝑉, 𝐸, 𝑋), where 𝑉 represents the set of 𝑁 microservices 

[9], [15]. The Augmented Service Dependency Graph (ASDG) is formally derived from distributed traces such 

that an edge 𝑒𝑖𝑗 ∈ 𝐸 exists if a functional dependency or request flow is observed between service 𝑠𝑖 and 𝑠𝑗 [19], 

[21]. 

To model how anomalies propagate through this topology, RCASage utilizes Graph Attention Networks (GAT). 

Unlike standard GCNs, GAT allows for masked self-attention layers to assign different levels of importance to 

neighbouring services: 

ℎ𝑖
′ = 𝜎 ( ∑ 𝛼𝑖𝑗𝑊ℎ𝑗

𝑗∈𝑁𝑖

) 

Where: 

 𝑁𝑖 is the neighbourhood of service 𝑖. 
 𝛼𝑖𝑗 is the attention coefficient, representing the strength of the dependency/influence of the service 𝑗 on 

service 𝑖: 

𝛼𝑖𝑗 =  
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ 𝑒𝑥𝑝𝑘∈𝑁𝑖
(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘]))

 

 This formalization allows the engine to weight "noisy" dependencies lower than critical failure paths 

during the inference stage. 
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B. Neural Granger Causal Discovery (NGCD): 

To capture non-linear causal relationships in multi-modal telemetry time-series (𝑥𝑡), RCASage implements Neural 

Granger Causal Discovery [8], [10], [16], [17]. It models the evolution of a metric 𝑥(𝑖) for service 𝑖 as a non-linear 

function of the past values of all services 𝑗 ∈ {1, … , 𝑁}:  

𝑥𝑡
(𝑖)

≈ 𝑓𝑖(𝑥<𝑡
(1)

, 𝑥<𝑡
(2)

, … , 𝑥<𝑡
𝑁 ) 

In this framework, 𝑓𝑖 is a Component-wise Multilayer Perceptron (MLP). Service 𝑗 is determined to causally 

influence service 𝑖 if the weights of the first layer of 𝑓𝑖 corresponding to 𝑥(𝑗) are non-zero. This is enforced during 

training via a group Lasso penalty to ensure a sparse causal graph: 

𝑚𝑖𝑛
𝑓

∑ ||𝑥𝑡 − 𝑓(𝑥<𝑡)||2 + 𝜆 ∑ ∑ ||𝑊(𝑖𝑗)||2

𝑁

𝑗=1

𝑁

𝑖=1𝑡

 

Where 𝑊(𝑖𝑗) represents the weight matrix connecting service 𝑗’s history to service 𝑖’s prediction. If ||𝑊(𝑖𝑗)||2 >
0, a causal edge 𝑗 → 𝑖 is confirmed [18]. 

C. Beta-Binomial Health Update Rule: 

The Autonomous Inference Engine (AIE) quantifies the probability of a component being the root cause using 

Bayesian updates. The health 𝜃𝑖  of service 𝑠𝑖 is modelled as a Beta distribution 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖) [7]. Upon observing 

𝑛 requests with 𝑘 successes, the posterior health is updated via the conjugate prior rule: 

𝑃(𝜃𝑖|𝑑𝑎𝑡𝑎) = 𝐵𝑒𝑡𝑎(𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑘, 𝛽𝑝𝑟𝑖𝑜𝑟 + (𝑛 − 𝑘)) 

The Root Cause Score (𝑆𝑟𝑐) for a node is then calculated as the negative log-likelihood of the observed failure 

rate given the current health belief, prioritizing nodes whose performance deviates most sharply from their 

historical Bayesian baseline. 

D. Just-In-Time (JIT) Defect Prediction Model: 

For proactive prevention, the framework employs a deep-learning-based classifier for JIT Defect Prediction [29], 

[36]. Given a code change 𝑐 the model predicts the probability of a defect 𝑃(𝑌𝑐 = 1) by fusing a feature vector 

𝜙(𝑐) consisting of Delta Metrics (e.g., additions/deletions of code lines, author expertise) and Semantic Change 

Embeddings: 

𝑃(𝑌𝑐 = 1|𝜙(𝑐)) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊2 ⋅ 𝑅𝑒𝐿𝑈(𝑊1𝜙(𝑐) + 𝑏1) + 𝑏2) 

This formalization can identify “bug-inducing commits” with great precision and assists the system in indicating 

possible production-grade problems prior to the deployment of the code [25], [26], [27], [30], [31], [32]. 

 

4 PERFORMANCE BENCHMARKS AND DISCUSSIONS 

The proposed AI-Augmented Inference Engine (AAIE) model can offer material changes in the speed, precision, 

and practice in the diagnostic process of microservices ecosystems. This discussion is a synthesis of the anticipated 

results of the architectural analysis and empirical standards that are established in the corresponding literature. 

4.1 Quantitative Gains in Diagnostic Accuracy and Speed 

Empirical research and the implementation of similar AIOps systems demonstrate that AI-based RCA can be 

much more effective than classical algorithms. The Accuracy of the Root Cause Identification is a vital KPI; thus, 

its level is likely to increase significantly. For example, hybrid graphical models have reached accuracy rates of 

more than 90% already, which is already a substantial improvement over the more traditional system monitoring 

techniques (~57%), and the average AIOps tools (~74%) [6], [7], [18]. The “root cause” vs. “propagated effects” 

dilemma of distributed environments can be directly tackled due to such high accuracy rates, establishing that the 

framework transcends correlation-based analysis to engage in causal analysis [8], [10], [11]. The time-to-

resolution is the most significant operational impact. The proposed framework eliminates the manual traceback 

processes with the automation of multi-modal telemetry and dependency graphs analyses. According to the results 

of empirical studies conducted on similar work, Mean Time to Resolve (MTTR) and Time to Diagnosis (TTD) 

can be reduced by more than 90 percent in comparison to conventional approaches [6], [13]. End-to-end diagnosis 

times of less than 5 seconds are achievable based on production-level studies on similar systems. Inference 

latencies are also kept low (e.g. below 900ms) even when the event loads are high [6], [7]. The typical figures and 

percentages of the performance gains (in time) of AI-Augmented and Causal AI systems over the traditional, 

manual, or correlation-based approaches are shown in Table 4.1. 

 

Table 4.1 Comparative Performance Gains of Root Cause Analysis Methods 

Metric 

Traditional RCA 

(Manual/Correlation-

based) 

AI-Driven Framework 

(Causal/Graph-based) 
Improvement (%) 

Mean Time To 

Resolution (MTTR) 
Hours to Days Minutes to Hours 

30% to 78% Reduction 

[4], [12], [13], [37] 
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Mean Time To Detect 

(MTTD) 
Hours Seconds to Minutes 

42% Improvement in 

RCA Identification 

Time [4] 

RCA Accuracy (Correct 

Root Cause Identified) 
~ 60\% - 78\% ~ 90\% - 95\% 

17% to 60% Boost in 

Accuracy [7], [20] 

False Positives/Alert 

Noise 
High Low 

50% to 80% Fewer 

False Positives [37] 

 

This acceleration is due to the inclusion of the Graph-Based Deep Learning module for holistic anomaly detection 

and the Neural Granger Causal Discovery module for causal analysis [9], [17], [19]. 

4.2 Addressing Operational Complexity and Proactive Stability 

The framework is aimed at addressing the complexity of the high number of services contained within a distributed 

microservices setting. The dynamic Service Dependency Graph allows the necessary architectural context for the 

analysis of the failures distributed across thousands of services [15], [19]. Moreover, the multi-modal data 

(metrics, logs, and traces) fusion is required for precise fault investigation and detecting faults in a heterogeneous 

setup, getting around the constraints of single-data-type analysis [18]. 

A key milestone that has been implemented is the shift towards a proactive mode, as opposed to reactive modes 

of operation. The support of Just-in-Time (JIT) defect prediction in the CI/CD pipeline allows early detection and 

correction of commits that cause bugs in a manner that prevents incidents in production in the first place [27], 

[30], [31], [37]. Such proactive measure along with the ability to anticipate the failure of cloud-native applications 

based on the monitoring data is a crucial preventive barrier [3], [20], [21], [33]. 

4.3 Operationalizing Causal AI: From Theory to Practice 

The major advantage of the RCASage framework is that Causal AI is operationalized in high-velocity production 

conditions. Even though the underlying theoretical advantages of the method have been well-established, it has 

proven challenging to scale in real-time conditions [8], [11]. The proposed system avoids this by using an 

Anomaly-Constrained Causal Discovery (AC-CD) pipeline that makes sure that the significant computation of 

the causal engine is only applied to the topographically meaningful and statistically anomalous subsamples of 

services.  

4.3.1 The Role of the Diagnostic Report Generator (DRG) 

The most important “last mile” component is the Diagnostic Report Generator (DRG), which presents an 

organized and readable format for abstract mathematical probability calculations of algorithms. The DRG 

component also acts as a Virtual Tier-1 Analyst, unlike the normal dashboarding tools, which only act as a viewer 

of telemetry information, the DRG component presents a multi-layered diagnostic report for: 

1. Visual Causal Traversal: This will enable it to visualize the ASDG (Augmented Service Dependency Graph) 

and highlight the “hot paths,” demonstrating how a database-level failure could propagate through the middleware 

to the end-user API. 

2. Evidence Attribution: Each RCI has some marker indicators of evidence (“evidence tokens”), e.g., a specific 

pattern of log errors or a dramatic change in the Neural Granger weight, to tell why this particular service was the 

one being flagged among the neighbouring services. 

3. Remediation Mapping: It associates the detected issue with the history of remediation and CI/CD metadata 

to offer suggested measures (e.g., “Roll back commit 𝑥” or “Increase thread pool for service 𝑦”). 

4.3.2 Incorporating Trust in SRE with the embedding of Explainable AI (XAI)  

The principles of Causal-centric XAI are incorporated into the proposed framework to make the prediction 

approach using the black-box model more acceptable during the operation phase. This is achieved in the proposed 

structure through the assistance of the following two specific mechanisms: 

 Counterfactual Reasoning: The XAI layer enables SREs the capability of conducting a "What-if" analysis 

via the UI (e.g., "Would this latency exist in a case where Service A was healthy?). These soft interventions are 

simulated so that the framework produces contrastive explanations that are assuring to the engineers that the root 

cause diagnosis is correct. 

 Path-Based Transparency: The framework also provides transparency using the concept of “justification 

paths” rather than giving a generic probability score. It also visualizes the Search-Space Pruning process to give 

an understanding of what services were not considered in the evaluation and what was the rationale behind such 

decisions, therefore, breaking the barrier of scepticism when deploying AI in automation. 

Such degrees of transparency are necessary to win the confidence of SRE teams. Table 4.2 [21], [26] shows the 

performance of different ML/DL models integrated in the CI/CD pipeline to predict defects and failures. The F1-

score and Area Under the Curve (AUC) are actually typical in defect prediction systems to perform classification 

tasks. Nevertheless, as it has been observed in some recent literature [6], [7], [14] high accuracy without 

explanations leads to “alert skepticism.” The operationalization of XAI within RCASage guarantees that the 



MULTIDISCIPLINARY JOURNAL OF ENGINEERING, TECHNOLOGY AND SOCIAL SIENCES (MJETS) VOL 3  NO. 1, 2026 (ISSN: 2636-4999; E-ISSN: 2616-1060),       

Indexed in Google Scholar (Email: mjets85@gmail.com) Nnamdi Azikiwe University, Awka, Nigeria 
 

15 
 
 

framework can be used as an operational companion to human teams so that they can establish a feedback loop 

of continuous learning to refine future causal issues. 

Table 4.2 Table showing the performance of Proactive Prediction Models 

Prediction Task 

Model Used (e.g., JITLine, 

GHA-BFP, Random 

Forest) [28], [30], [36] 

Key Metrics Used 

[32] 

Performance 

Metric (e.g., 

F1-Score) 

Benefit (e.g., 

Reduced Build 

Failures) [28], 

[37] 

JIT Defect 

Prediction [30] 

[31] 

Bi-modal Change 

Representation Learning 

Change Metrics, 

Source Code 

Metrics 

F1JIT 

Code Quality, 

Reduced 

Production 

Incidents 

Automated 

Anomaly 

Detection in 

CI/CD [21] 

Machine Learning 

Approaches 

Build Logs, Test 

Results 
AUCAnomaly 

Early Fault 

Isolation, Faster 

Feedback 

Build Failure 

Prediction [28] 
GHA-BFP 

Repository Metrics, 

Build Performance 

Metrics [35] 

Accuracy 
CI/CD Pipeline 

Optimization [23] 

 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This study proposes an architectural design for RCASage, an AI-augmented inference engine (AAIE) conceived 

as a holistic conceptual framework for addressing critical challenges in root cause analysis (RCA) within 

distributed microservices environments. The proposed framework advances beyond reactive troubleshooting by 

introducing an automated, evidence-based approach through a vertically integrated pipeline that combines 

dynamic dependency modeling, multi-modal anomaly detection, and anomaly-constrained causal discovery. 

The design is specifically intended to enable a transition from symptomatic correlation to explicit cause-and-effect 

reasoning, supported by Explainable AI (XAI) mechanisms that ensure transparency and foster operational trust. 

The framework adopts a dual focus by integrating proactive defect prediction within the CI/CD pipeline alongside 

a high-precision reactive RCA engine, thereby offering a comprehensive approach to system reliability. 

Although full empirical evaluation of the RCASage architecture remains the subject of forthcoming experimental 

research, existing literature on comparable causal-graph-based architectures and autonomous inference agents 

provides insight into the performance potential of such systems. Drawing on evidence reported in related studies, 

estimated benchmarks suggest the potential to reduce Mean Time to Resolution (MTTR) and Time to Diagnosis 

(TTD) by more than 90% in fully autonomous environments. This work therefore represents a foundational step 

toward the development of highly resilient, self-adaptive, and ultimately autonomous IT operations. 

5.2 Future Work and Research Directions 

Despite the theoretical advancements of the framework, various research areas need to be explored to develop this 

blueprint into a production-ready system: 

 Experimental Validation and Prototyping: The next step to take would be to implement the RCASage 

pipeline into a physical controlled microservices environment (like Google’s Online Boutique or other similar 

benchmarking suites) to provide primary data and test the performance of the AC-CD algorithm. 

 Improved Learning and Adaptation: With the addition of a Reinforcement Learning layer, the system 

would be able to learn from the results of remediation, hence improving its inference methods over time. In 

addition, it would be beneficial to use direct feedback provided by Site Reliability Engineers to raise the threshold 

of anomalies and dependency scores over time. 

 Advanced Modelling and Generalization: Agent-Based Modelling studies about digital twin 

infrastructure have the potential to improve the prediction methods by modelling the dynamics of error 

propagation. Also, work on the generalization abilities of basic architectural ideas to other complex domains, 

including healthcare implementation or Industrial IoT, will be an interesting path forward. 

 Technical Refinements and Benchmarks: Future work should involve work to overcome such limitations 

as the “cold start” problem, and the use of more sophisticated forms of telemetry (e.g., execution metrics, or logs 

of developer activity). Standard benchmarks for evaluating the scalability and performance of Causal AI engines 

for ultra-large-scale deployments would also form another significant area that contributes to the advancement of 

the field. 

 Fully Autonomous Architectures: The future direction will be towards fully autonomous systems. This 

requires studying how to remove the requirement of manually defined failure times, advancing towards end-to-

end anomaly detection and RCA that enable self-healing cloud architectures. 
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