Feeding Practices and Nutritional Status of HIV-Exposed Infants seen in a Tertiary Hospital in Sokoto, North-western Nigeria

^{1*}Jibrin B, ¹Yusuf T.

¹Department of Paediatrics, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

Corresponding Author:

Jibrin B. Department of Paediatrics, Usmanu Danfodiyo University, Sokoto, Nigeria.

Email: babaaliyujibrin@yahoo.co.uk, 08036782914

Abstract

Background: Adequate and proper infant feeding is an effective lifesaving strategy, especially for HIV-exposed infants. The feeding practices and nutritional status of HIV-exposed infants are critical components in ensuring their optimal growth and development. In the context of Sokoto, a state located in north-western Nigeria, several factors influence how these infants are fed and their nutritional outcomes. The need to explore the dynamics of HIV exposure, maternal care, socio-economic conditions, and local healthcare practices is vital for assessing the situation. This study was aimed at determining feeding practices and nutritional status in HIV-exposed infants in a Tertiary hospital, Sokoto, Nigeria.

Methodology: A cross-sectional study conducted among HIV-exposed infants attending the Paediatric ART clinic, UDUTH, Sokoto. The demographics, infant feeding practices, weight, and length of the randomly selected HIV-exposed infants attending the clinic were documented. The nutritional status was determined using the WHO classification of malnutrition. Data were analysed using SPSS version 27.0. A p-value of \leq 0.05 was taken as significant.

Results: One hundred and seventy were studied. One hundred and two (60%) were aged 12.1 - 18.0 months with a mean (\pm SD) age of $16.9(\pm3.6)$ months. There were 90 males with 104(61.2%) from low socio-economic class One hundred and thirty-four (78.8%) were exclusively breastfed, 115(67.6%) were initiated on complementary feed at 6 months of age and 84(49.4%) had plain pap as complementary feed. Sixty-seven (39.4%) were undernourished with stunting, underweight and wasting seen in 46(27.1%), 30(17.6%), and 27(15.9%) of the children respectively. There was a statistically significant association between the complementary feeding practices and the nutritional status of HIV-exposed infants.

Conclusion: The majority of HIV-exposed infants had breastmilk with suboptimal complementary feeding practices and attendant poor nutritional status. Efforts should be geared towards improving appropriate complementary feeding practices for infants to enhance their nutritional status.

Keywords: Feeding practices, Nutritional status, HIV-Exposed

Introduction

The World Health Organization (WHO) and the United Nations Children's Fund established a global strategy for optimal infant and young child feeding. These include exclusive breastfeeding (EBF) for the first 6 months of life, the introduction of appropriate, adequate, and safe complementary foods at 6 months, and

continued breastfeeding for children up to years and beyond. 1 Early age commencement of proper childhood feeding practices is fundamental in a child's healthy growth, development, and attainment of full potential.² Human Immunodeficiency Virus (HIV)-exposed infant or child is an infant or child born to a mother living with HIV until the infant or child is reliably excluded from being HIV infected.³ Appropriate infant feeding practice is an effective lifesaving strategy, especially for HIV-exposed infants.4

HIV remains a major global public health problem claiming an estimated 42.3 million lives to date with ongoing transmission in all countries worldwide. African Region at the end of 2023, contributed 65% of an estimated 39.9 million people living with HIV, 1.3 million people acquired the disease, and death of 630 000 people from HIV-related causes.5 Nigeria has the world's secondhighest burden of HIV/AIDS with extensive regional variations in prevalence. Approximately 260,000 children aged 0-14 years were living with HIV with 41,000 new infections in 2015.6 The Nigerian, national prevalence of HIV was estimated to be 2.1% (2023) amounting to 2 million people aged 15-49 years, compared to the previous estimation of 1.8 million in 2022.^{7,8} HIV

prevalence in Nigeria varies by state, highest in Akwa Ibom (5.5%), lowest in Katsina (0.3%), but Sokoto between 0.3 - 1.3%.^{6,9} The percentage of infants born to HIV mothers reported previously was 26.6% and mother-to-child transmission (MTCT) may occur during pregnancy (in-utero), labour, delivery, and breastfeeding. ^{9,10}

Exclusive breastfeeding (EBF) for the first six months of life is recommended for HIVexposed infants, due to its nutritional benefits and immune system support it offers. 11,12 Antiretroviral therapy (ART) for mothers can reduce the risk of HIV transmission through breastfeeding, especially in poor resource settings where there are concerns regarding the potential transmission of HIV through breast milk. 11,12,13,14 The World Health Organization (WHO) recommended the option of EBF or exclusive replacement feeding (ERF) such as formula feeding by HIV-infected mothers depending on their viral load and adherence to ART.3,11,12 Mixed feeding enhances HIV transmission as it potentiates the inflammation of the infant's delicate digestive system induced by the breast milk substitute which allows easy absorption of the virus from breast milk in the infant's intestines. 14,15,16

A common alternative where breastfeeding is not advisable or feasible is formula feeding, though it can be costly and difficult to access, especially in low-income areas. There is often a lack of awareness or resources to ensure proper preparation and hygiene in formula feeding, which can lead to malnutrition and infections if not done correctly. 4,13,14

At six months, complementary foods are typically introduced. Cultural practices, economic conditions, and safe, nutritious food availability influence the types of complementary foods given. Cultural preferences may influence the choice of complementary foods, but the foods must the nutritional needs of the meet infant.^{3,13,17,18} Malnutrition is a common concern in the complementary feeding phase, especially if the foods provided lack essential nutrients.

HIV-exposed infants are at higher risk for poor growth and developmental delays compared to non-exposed infants. Growth faltering is often observed, with lower rates of weight gain and stunting. ^{17,18,19} Nutritional deficiencies, such as vitamin A and iron deficiency, can further exacerbate growth problems. Infants who are HIV-exposed are at higher risk of anemia, partly due to

compromised immune systems and insufficient nutritional intake. Iron supplements or fortified foods may be necessary to address this issue, but access and adherence to such interventions can be challenging. HIV-exposed infants vulnerable to micronutrient deficiencies, which can affect their immune function, growth, and cognitive development. Common deficiencies include vitamins A, D, and E, as well as iron and zinc. 20,21 Regular monitoring of their nutritional status and timely supplementation is crucial to prevent long-term effects.^{22,23} HIV-exposed infants often suffer from recurrent infections, which can worsen their nutritional status. Malnutrition, in turn, makes them more susceptible to infections, creating a cycle of health issues that affect their overall wellbeing. This current study, therefore, was aimed at determining the feeding practices and the nutritional status of HIV-exposed infants seen in UDUTH, Sokoto, a. tertiary health facility in North-Western Nigeria.

Hypothesis

1. There is no significant difference between infant feeding practices and nutritional status of HIV-exposed infants (*H0* null hypothesis)

2. There is a significant difference between infant feeding practices and the nutritional status of HIV-exposed infants (*H1* alternate hypothesis)

below,²⁴ and 20% non-respondent rate was added. The mother-infant pairs were recruited consecutively as they presented to the clinic.

Methodology

Study Area, Study Design, Study Period

A cross-sectional hospital-based study, conducted at the Paediatric ART clinic, Usmanu Danfodiyo University Teaching Hospital (UDUTH), Sokoto from June to December 2022.

Study Population

The mother-infant pairs of HIV-positive mothers and HIV-exposed infants, 6 months – to 2 years attending PMTCT of the Paediatric ART clinic, Usmanu Danfodiyo University Teaching Hospital (UDUTH), Sokoto. The mother-infant pairs who were eligible and consented, participated in the study. Mothers who were too sick and children with congenital anomalies/disability and no result of PCR were excluded.

Sample Size Determination, Sampling Technique

Sample size in health studies for a single population was used to determine the sample size for the present study, using the formula

$$N = Z^2 pq$$

$$d^2$$

Where,

N = sample size

Z is the z score value at 95% confidence interval (CI) = 1.96

P is the prevalence of exclusive breastfeeding rate in Sokoto = 17.7%.²⁵

$$q = 1 - P = 1 - 0.177 = 0.823$$

d = Desired precision = 0.05 (5%)

$$n = (1,96)^2 \times 0.177 \times (1 - 0.823) = 223.8 = 224$$

$$(0.005)^2$$

Adjustment/reduction formula for a target population of 216 who are less than 10.000

 $nf = \underline{n}$ nf = the desired sample size when the population is less than 10,000

1+ (n/N) n= the desired sample size when the population is more than 10,000

N= the estimate of the population size (216 HIV mothers enrolled P=110 into PMTC clinic in UDUTH)

Adding 20% (22) non-respondents' rate = 132

170 mother-infant pairs who are actively attending PMTC/ART clinic was used over the six months study period.

<u>Data Collection</u>, tools, and variable measurement

Relevant documents and published literature similar topics were reviewed in developing the data collection tools for this study. Data were collected by a pretested, validated. structured self-administered questionnaire by the researchers. The demographics of the mother-infant pair, socio-economic status of the parents using Ovedeji classification, 26 infant feeding practices, weight and length of the HIVexposed infants attending the clinic were documented. Feeding practices were assessed using the core indicators including Early initiation of breastfeeding (initiation of breastfeeding within one hour after birth),

Exclusive breastfeeding under 6 months, Continued breastfeeding at 1-year, Exclusive replacement feeding (Breast milk substitutes/Infant formula only under 6 months) and initiation/type of complementary feeds as well as the history of nutritional counseling. The weight was measured using a digital scale placed on a hard, flat surface and taken with minimum clothing recorded to the nearest 0.1Kg while the length was measured using a measuring board while the child was lying supine and was recorded to the nearest 0.1 cm. The nutritional status was determined using the WHO classification (WHO growth standards) of malnutrition.²⁷ Undernutrition was defined by the presence of either stunting (length-for-age), wasting (weight-forlength), or underweight (weight-for-age) below – 2 SD of the WHO growth standards each respectively.

Data Analysis

Data were entered and analysed using SPSS version 27.0. the results were summarised and presented in frequencies, proportion/percentages, texts, tables and figures respectively. Logistic regression was used to determine whether there were statistically significant differences and associations dependent between and

independent variables. A p-value of ≤ 0.05 was taken as significant.

Ethical Consideration

Ethical Approval for the study was sought and obtained from the UDUTH Sokoto's ethics and research committee as well as informed and verbal written consent from the participating mothers. They were informed about the objectives, significance/ benefits, risks, and voluntary participation of the study as well as rights to withdraw at any time without affecting their treatment. Privacy and full confidentiality were ensured.

Results

One hundred and seventy mother-infant pairs were recruited in the study and all participated making a response rate of 100%. The majority of the mothers, 106 (62.4%) were in the age group of 25-35 years (age range 15-39 years). All mothers were married but only 50 (27%) had primary or secondary education. Most of the study subjects 104 (61.2%) mother-infant pairs were from low socio-economic status. Of the 170 infants studied 102 (60%) were aged 12.1 – 18.0 months with the mean (±SD) age of 16.9(±3.6) months. There were 90 males and

80 females, making a Male-Female ratio of 1.1:1. (Table 1)

One hundred and forty (82.4%) of the mother, initiated breastfeeding within the first hour after delivery, 134(78.8%) infants were exclusively breastfed, 5(3%) had exclusive replacement feeding, 115(67.6%) were initiated on complementary feed at 6 months of age and 84(49.4%) had plain pap as complementary feed and 104 (61.2%) were on continued breastfeeding up to 1 year. (Table 2).

Sixty-seven (39.4%) were undernourished with stunting, underweight, and wasting seen in 46(27.1%), 30(17.6%), and 27(15.9%) of the children respectively. (Figure I).

Table 1: Socio-demographic characteristics of the participants (N=170)

Parameter	Number (n)	Percentage (%)		
Age Groups (months)				
Mean \pm SD = 16.9 \pm 3.6				
6.0 - 12.0	23	13.5		
12.1 - 18.0	102	60		
18.1 - 24.0	45	26.5		
Gender				
Male	90	52.9		
Female	80	47.1		
Socioeconomic Status				
Upper	24	14.1		
Middle	42	24.7		
Lower	104	61.2		

Table 2: Feeding practices among the participants (N=170)

participants (N=170)				
Variable	Frequency	Percentage		
	(n)	(%)		
Early initiation of breast feeding				
_	140	82.4		
Yes				
	30	17.6		
No				
Exclusive 1	breast feeding			
	134	78.8		
Yes				
	36	21.2		
No				
Continued	breast feeding	· •		
	104	61.2		
Yes				
	66	38.8		
No				
Exclusive replacement feeding				
	5	3		
Yes				
	165	97		
No				
Complementary feeding				
	115	67.6		
Yes				
	55	32.4		
No				

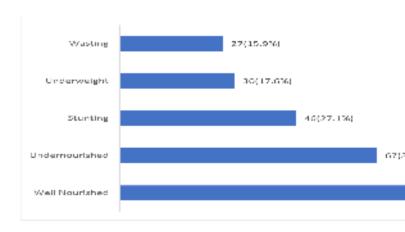


Fig. 1: Nutritional statuses of the participants

There was no significant difference in the likelihood of stunting among infants on EBF to those on ERF (OR=0.97; p=0.150; 95% CI 0.07-2.14). In contrast, infants on EBF were 3.31 times less likely to be stunted than those on CF (OR=3.31; p=0.001; 95% CI 0.87-4.53) as shown in Table 3 below. The hypothesis (H0) which stated that there is no significant relationship between infant feeding practices and nutritional status (stunting) among HIV-exposed infants was therefore, rejected.

Table 3: Association between Stunting and infant feeding practice (N=170)

rable 5.7 ibboolation between stanting and mant recaing practice (1, 170)				
Infant Feeding practice	Odd Ratio (OR)	95% Confidence Interval (CI)		P-value
		Lower limit	Upper limit	
Exclusive breastfeeding	1	-	-	-
Exclusive replacement feeding	0.97	0.07	2.14	0.150
Complimentary feeding	3.31	0.87	4.53	0.001

Table 4: Association between Underweight and infant feeding practice (N=170)

Infant feeding practice	Odd Ratio (OR)	95% Confidence	Interval (CI)	P-value
		Lower limit	Upper limit	
Exclusive breastfeeding	1	-	-	-
Exclusive replacement feeding	0.75	0.25	4.88	0.601
Complimentary feeding	2.08	0.28	6.53	0.001

Table 5: Association between Wasting and infant feeding practice

		61		
Infant Feeding practice	Odd Ratio (OR)	95% Confidence Interval (CI)		P-value
		Lower limit	Upper limit	
Exclusive breastfeeding	1	-	-	-
Exclusive replacement feeding	0.10	0.06	3.14	0.781
Complimentary feeding	1.31	0.87	4.75	0.001

Likewise, there was no significant difference in the likelihood of underweight among infants on EBF compared to those on ERF (OR=0.75; p=0.601; 95% CI 0.25-4.88). In contrast, infants on EBF were 2.08 times less likely to be underweight than those on CF (OR=2.08; p=0.001; 95% CI 0.28-6.53 (Table 4). The hypothesis (H₀) which stated that there is no significant relationship between infant feeding practices and nutritional status (underweight) among HIV-exposed infants was therefore, rejected.

Similarly, there was no significant difference in the likelihood of wasting among infants on EBF compared to those on ERF (OR=0.10; p=0.781; 95% CI 0.06-3.14). In contrast, infants on EBF were less likely to be wasted than those on CF (OR=1.31; p=0.001; 95% CI 0.87-4.75) (Table 5). The hypothesis (H₀)

which stated that there is no significant relationship between infant feeding practices and nutritional status (wasting) among HIVexposed infants was therefore, rejected

Discussion

Appropriate infant feeding is a persistent challenge for HIV-infected mothers. particularly in poor-resource settings, in which HIV-positive mothers do not comply with the **WHO** feeding recommendations. 15,23,28 This present study has demonstrated the feeding practices and nutritional status of HIV-Exposed infants in a Tertiary Hospital, Sokoto, North-Western Nigeria.

Almost all the mothers (97%) that participated in this study breast fed their

infants and more than two-third (82%) of them commenced early or initiated breast feeding in the first 1 hour of life. A similar trend was recorded in the study area in 2017 (5 years ago)²⁹ and early initiation of breastfeeding in the 1st hour of 91.7% and 95.3% was obtained in other studies done in Maseru/Shashemene, Nairobi, and Bomet County, both in Kenya, each respectively. 30,31 Furthermore, high percentages breastfeeding rates (84.4%) and early initiation of breastfeeding (74.6%) were also reported by Daniel et al in Wolaita, Ethiopia. 18 The very high breastfeeding rate and early initiation of breastfeeding seen in this study may be attributed to the intense and consistent nutritional counseling given to the participating mothers during pregnancy and after delivery.

The majority of the infants 78.8% in this current study were exclusively breastfed (EBF) for the first 6 months, whereas very few 3% had Exclusive replacement feeding (ERF) but none received mixed feeding under 6 months of age. Similarly, a high proportion of 77.5% and a higher of 85.8% of HIV-Exposed infants had EBF as reported in similar studies in Lira, Uganda, and a Referral Hospital, in East Gojam, Ethiopia respectively.^{32,33} In Nigeria, EBF rate among HIV-Exposed infants documented by Akpan

et al^{28} of 73.6% was in the same range obtained in this present study but lower compared to the prevalence of 61% recorded in South-Western Nigeria and much lower (46%) reported in Abuja, Nigeria. 34,35 On the other hand, our study recorded very low ERF with no mixed feeding in the first six months similar low ERF of 6.5% but a high (19.9%) of mixed feeding reported in Calabar, Nigeria,²⁸ in contrast to a very much high percentage (40%) of ERF and 14% mixed feeding reported in Abuja, Nigeria³⁵ and 19.9% of ERF with 45% mothers practicing mixed feeding in Wolaifa, Ethiopia. 18 The differences in the rates of EBF, ERF, and mixed feeding obtained in this present study compared to others reported earlier may be variability of infant feeding among HIVpositive mothers from one country to another and region by region coupled with socioeconomic and cultural factors.

The prevalence of undernutrition in our present studied infants was high (39.4%) with stunting being the highest (27.1%), followed by underweight (17.6%) and then wasting (15.9%). Other studies showed lower rates of undernutrition of 22.9% in Tanzania³⁶ and 20.2% in St Francis Hospital, Central Uganda.³⁷ Similar patterns of nutritional status of stunting (36.9%), underweight (14.6%), and wasting (10.6%), highest to

lowest were also recorded in Abeokuta, particularly among EBF HIV-Exposed children. The high rate of undernutrition and attendant nutritional status of our infants' subject in this study, may be explained by the poor complementary feeds given to more than two-thirds of the children.

The present study has demonstrated that EBF infants were one to three times less likely to become stunted, underweight, and wasted respectively. Likewise, those infants that were on ERF were less prone to be stunted, wasted, or underweight. In contrast, infants on CF had up to three times more likelihood of developing stunting, underweight, and wasting respectively. Similar findings with some modifications worst with mixed feeding were reported on feeding practices, (EBF, ERF, Mixed feeding and CF) and their effects on the nutritional status of HIVexposed infants respectively in previous studies. 18,28.32,35-37 Maternal sociodemographic factors that include education, poverty as well as maternal viral load, nutrition, ART adherence, and cultural norms may be the determinants of these associations. These will require subsequent and further evaluations locally.

Some limitations of the study included: recall bias on the history of infant feeding practice,

single-center sampling/ hospital-based study, and determining the association of maternal viral load and nutrition with ART adherence were some of the limitations of the study

Conclusion

The majority of HIV-exposed infants had breastmilk with suboptimal complementary feeding practices and attendant poor nutritional status. Efforts should be geared towards improving the complementary feeding practices for infants to enhance their nutritional status via health education nutritional counselling, improved health access and interventions.

References

- Hollis J.L., Collins C.E., DeClerck F., Chai L.K., McColl K., DeMaio A.R. Defining Healthy and Sustainable Diets for Infants, Children and Adolescents. Glob. Food Secur. 2020; 27:100401.
- Christana Berti, Piotr Socha. Infant and Young Child Feeding Practices and Health. Nutrients. 2023 Feb 27;15(5):1184.
- WHO 2016 Guideline Update on HIV and Infant Feeding. Available from https://www.who.int/publications/i/item/9789241 549707 Accessed on 5th Nov 2024
- Goon DT, Ajayi AI, Adeniyi OV. Reasons for the early introduction of complementary feeding to HIV-exposed infants in the Eastern Cape, South Africa: an exploratory qualitative study. Medicina (Kaunas). 2020 Dec 16;56(12): 703.
- HIV AND AIDS. Available from https://www.who.int/news-room/fact-sheets/detail/hiv-aids accessed on 5th November 2024

- 6. Health and HIV. Available from https://www.unicef.org/nigeria/health-hiv Accessed on 5th November 2024
- Onovo Amobi Andrew, Adeyemi Adebayo, Onime David, Kalnoky Michael, Kagniniwa Baboyma, Dessie Meleku, et al. Estimation of HIV Prevalence and Burden in Nigeria: a Bayesian predictive modelling study. e Clinical Medicine, 2023; Volume 62, 102098
- 8. National Summary Sheet 2018 NAIIS and UNAIDS Available from https://www.naiis.ng/resource/factsheet Accessed on 5th November 2024
- National Guideline on HIV 2020. Available from https://www.differentiatedservicedelivery.org/wp-content/uploads/National-guidelines-Nigeria-2020.pdf Accessed on 5th November 2024.
- 10. Global AIDS monitoring 2020; Country Progress Report: Available from https://www.unaids.org/sites/default/files/country/documents/NGA 2020 countryreport.pdf
 Accessed on 5th November 2024
- 11. Takah NF, Atem JA, Aminde LN, Malisheni M, Murewenhema G. The impact of approaches in improving male partner involvement in the prevention of mother-to-child transmission of HIV on the uptake of safe infant feeding practices by HIV positive women in sub-Saharan Africa. A systematic review and meta-analysis. PLoS One. 2018 Dec 3:13(12): e0207060.
- Ikeako LC, Ezegwui HU, Nwafor MI, Nwogu-Ikojo E, Okeke TC. Infant feeding practices among HIV-positive women in Enugu, Nigeria.Br J Med Med Res;2015; 8(1): 61-68.
- 13. Ejara D, Mulualem D, Gebremedhin S. Inappropriate infant feeding practices of HIV-positive mothers attending PMTCT services in Oromia regional state, Ethiopia: a cross-sectional study. Int Breastfeed J. 2018 Aug 17;13: 3.
- 14. Mutawulira I, Nakachwa J, Muharabu L, Wilson Walekhwa A, Kayina V (2022). Exploring infant feeding practices and associated factors among HIV-positive mothers attending early infant diagnosis clinic in Northern Uganda. Epidemiology and Infection 150, e130, 1–7.
- 15. Yu W, Li C, Fu X, Cui Z, Liu X, Fan L.et al. (2014) The Cost-Effectiveness of Different Feeding Patterns Combined with Prompt Treatments for Preventing Mother-to-Child HIV Transmission in South Africa: Estimates from Simulation Modeling. PLoS ONE 2014; 9(7): e102872
- Ogundele T, Ogundele OA & Adegoke AI.
 Determinants of pre-lacteal feeding practices among mothers of children aged less than 24 months in Ile-Ife Southwest Nigeria: a community cross-sectional study. Pan African Medical Journal. 2019; 34:172.
- Yusuf T, Jibrin B. Complementary feeding practices and nutritional status of young children in a community in Sokoto. Niger J Paediatr 2020; 47 (4):324-329

- Daniel Baza, Amene Abebe, Mesfin Markos. Infant feeding practices among HIV positive mothers enrolled in selected public health institutions of Wolaita, Ethiopia: facility based multicenter cross-sectional study. PAMJ - One Health. 2022;7(38).
- Jumare J, Pam D, Osawe S, Okolo F, Mohammed S, Inyang et al. Compromised Growth Among HIV-exposed Uninfected Compared with Unexposed Children in Nigeria. Pediatr Infect Dis J 2019; 38:280–286
- Folson GK, Bannerman B, Asante M, Tokor GS, Ador G, Atadze V, Puplampu P, Dame JA, Neizer M and Yamauchi F (2024) Diet quality and nutritional status of HIV-exposed children aged between 6 and 18 months in the Greater Accra Region of Ghana. Front. Sustain. Food Syst. 2024; 1-13. 8:1251611.
- Fabusoro OK, Mejia LA. Nutrition in HIV-Infected Infants and Children: Current Knowledge, Existing Challenges, and New Dietary Management Opportunities. Adv Nutr. 2021 Jul 30;12(4):1424-1437. doi: 10.1093/advances/nmaa163
- Iliyasu Z, Galadanci HS, Hassan-Hanga F, Abdulrahman Z, Ismail FT, Marryshow SE, et al. Healthcare workers' knowledge of HIV-exposed infant feeding options and infant feeding counseling practice in Northern Nigeria. *Curr HIV* Res 2020;18(1):29–40.
- 23. Solanke FE & Tunde-Olatunji, OA. Feeding Practices and Nutritional Status of HIV-Positive Mothers and Exposed-Infants in Abeokuta, Ogun State, Nigeria. Education & Science Journal of Policy Review and Curriculum Development. 2018: 8(1);48-69
- 24. Lwanga SK, Lemeshow S, World Health Organization. Sample size determination in health studies: a practical manual/SK Lwanga and S. Lemeshow. In:Sample size determination in health studies: a practical manual/SK Lwanga and S. Lemeshow 1991. Available on: https://scholar.google.com/ accessed 5th November 2024.
- 25. Baba Jibrin, Yusuf Tahir. The Effect of Exclusive Breast-Feeding Practices on Morbidity Among Under-Five Children in a Semi-Urban Community in Sokoto, North-Western Nigeria. *Int* J Health Sci Res. 2024; 14(10):438-443.
- Oyedeji GA. Socio-economic and cultural Background of Hospitalized Children in Ilesha. Nig Journ of Paediatrics. 1985; 12(4): 111 – 7
- World Health Organization, "WHO child growth standards and the identification of severe acute malnutrition in infants and children," 2009 Available from https://www.who.int/tools/child-growth-standards/standards Accessed on 5th November 2024
- Akpan U, Omoronyia E, Arogundade K, Asibong U, Nwagbata A, Akpnika C.et al. Infant-Feeding Practices Among Women Living with Human Immunodeficiency Virus (HIV) in a Southern

- Nigerian Region: A Mixed Comparative Study. Cureus; February 26, 2023;15(2): e35483
- Yusuf T, Jega MR. Duration of Breast Feeding and Outcome of HIV-Exposed Infants seen at a Tertiary Health Facility in Sokoto. Bo Med J 2020;17(1):1-8
- Ansha MG, Kuti KA, Tasew ST. Infant feeding practice and associated factors among HIV positive mothers at health institution of Shashemene town, South Ethiopia. J Family Reprod Health. 2020;14(2): 124-130
- Lang'at PC, Ogada IA, Steenbeek A, Odinga G and Mwachiro MM. Do the feeding practices and nutrition status among HIV-exposed infants less than 6 months of age follow the recommended guidelines in Bomet County, Kenya? BMC Nutrition (2016) 2:43
- 32. Napyo A, Tumwine JK, Mukunya D, Waako P, Tylleskär T, Ndeezi G. Exclusive breastfeeding among HIV exposed infants from birth to 14 weeks of life in Lira, Northern Uganda: a prospective cohort study. Glob Health Action. 2020 Dec 31;13(1): 1833510
- 33. Wakwoya EB, Zewudie TA, Gebresilasie KZ. Infant feeding practice and associated factors among HIV positive mothers in Debre Markos

- Referral Hospital East Gojam zone, North West Ethiopia. Pan Afr Med J. 2016;24: 300
- Aishat U, David D, Olufunmilayo F: Exclusive breastfeeding and HIV/AIDS: a crossectional survey of mothers attending prevention of motherto-child transmission of HIV clinics in southwestern Nigeria. Pan Afr Med J. 2015, 21:309.
- Mohammed A, Shehu AU, Zoaka AI: Infant feeding options, practices and determinants of feeding practices among HIV seropositive mothers in Abuja, Nigeria. Niger Med J. 2010, 51:14-7.
- C. M. McDonald et al., "Predictors of stunting, wasting and underweight among Tanzanian children born to HIV-infected women.," Eur. J. Clin. Nutr., 2012; vol. 66, no. 11, pp. 1265–1276
- 37. R. Magezi, J. Kikafunda, and R. Whitehead, "Brief Report Feeding and Nutritional Characteristics of Infants on PMTCT Programs," 2008; Journal of Trop Pediatrics 55(1), 32-5.

Conflict of interest: Nil

Source of funding: Nil