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Abstract

Condensation methods for evaluating the determinant of a square matrix over the
years had been restricted to that of Chio’s condensation method (CCM) and
Dodgson condensation method (DCM); however, recently (Ufuoma, 2016, 2019)
introduced a new method of condensation known as the intermediate condensation
method (ICM). This method was later reinvented by (Salihu and Marevci, 2019).
Thus, in this study, a generic representation of condensation methods is given,
which consequently yields a new condensation method for evaluating the
determinant of a square matrix which we shall call Okokwu condensation method
(OCM).
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condensation

1. BACKGROUND TO THE STUDY

The two determinantal identities constructed in the mid nineteenth century
are due to Chio’s and Dodgson’s, from the perspective of their origins in
earlier work by (Sylvester, 1851) and (Jacobi, 1841). A good number of
proofs of Chio’s and Dodgson’s identities are cited for completeness
purposes. In a recent review of Roger Hart’s book, The Chinese Roots of
Linear Algebra, the reviewer, Joseph F. Grcar, asserts that many authors
including Charles Dodgson have reinvented Chio’s method to evaluate
determinants (Joseph, 2012). Although Dodgson’s and Chio’s identities
considered as methods have many attributes in common, they are
fundamentally different. From the historical origins of each identity,
explicitly we may link Dodgson’s identity to a theorem of Jacobi, and
Chi0’s identity to a theorem of Sylvester.

The subject of determinant is quite far reaching, cutting across every facet
and branch of mathematics, which is quite intriguing and interesting. In
Control Theory and Stability Analysis, it is employed in the Routz Harwuz
theory and aid the process that produces the characteristic equation that
yields the eigen values and its corresponding eigen vectors; in Linear
Algebra, it is used to establish the existence of solution of linear system; in
Differential Equation, it is used to establish the independency of set of

44



International Journal of General Studies (1JGS), Vol. 5, No. 2 September 2025

solution of a differential equation via the Wronskian’s determinant; in Co-
ordinate Geometry, it is used to obtain the volume of parallelepiped and the
area of a plane figure (Salihu and Marevci, 2021); in Numerical Analysis
and Interpolation Theory, it is used to establish the existence of
interpolating function via the Vandemond’s determinant, to mention but a
few. Based on the applicable importance of determinant as highlighted
above and many more it is the interest of this research work to look into the
method of determinant evaluation known as Condensation method, with
particular interest on the method of proof for the case of intermediate
condensation method which is already in existence considering the fact that
it is the most recent development in this line of research as touching
condensation methods.

2. STATEMENT OF THE PROBLEM

It is observed from literature that in recent years much attention has been
given to the development of efficient methods of evaluating the determinant
of a square matrix via condensation process (Sylvester, 1851; Jacob, 1841,
Chio, 1853; Dodgson, 1866; Muir, 1911a, 1911b; Ufuoma, 2016, 2019;
Salihu and Marevci, 2019; Harwood, et al., 2016). Condensation methods
for evaluating the determinant of a square matrix over the years had been
restricted to that of Chio’s condensation method (CCM) and Dodgson
condensation method (DCM); however, recently (Ufuoma, 2016, 2019)
introduced a new method of condensation known as the intermediate
condensation method (ICM). This method was later reinvented by (Salihu
and Marevci, 2019). Thus, in this study, a new condensation method is
proposed for evaluating the determinant of a square matrix which we shall
call Okokwu condensation method (OCM).

3. THE PROPOSED OKOKWU CONDENSATION METHOD (OCM)

In order to catch a glimpse of the method we wish to propose, we shall
introduce a pair-wise ordered multiplication process for the row and column
entries as follows:

Let r; € R; be points of the row entries and ¢; € C; be points of the column
entries, then we represent any pair-wise multiplication (cell representation)
of the row by column as such

L4 Qj Qij+1
G G1):=
(riﬂ) X (G G [ Qjt1j ai+1j+1|] G.1
So that in general, by this representation (definition) we shall have that
R; aij Qe "
C;i Ciy1):=
(Ri+1) x (& G ( Qit1jf ai+1j+1|) (3.2)

ij=1
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Where we consequently define a condensation condition equation for new rows as

VoM (3.3)
Aiv1j  Riq

Which can also be defined column-wise as will be seen in the sequel.

Now, observe that if we fix row R; = Ry Vi and column (; = C; V j simultaneously. Then we

shall have

Ry a1 agjen T
C; Ciyq):=
(Riﬂ) x(C1 G (lai+11 ai+1j+1|)”=1 (CE))
Furthermore, if we fix only column C; = C; V j. Then we shall have
R; ai Qijr1 ("L
C1 Ciy1):i=
(Ri+1) x (€1 Cjp1): (|ai+11 ai+1j+1|)ij=1 (3.5)

it is interesting to know that with appropriate normalization constant for each of these
representations, we shall have (3.2) to yield the Dodgson’s condensation, (3.4) to yield the Chio’s

condensation and finally (3.5) to yield the Ufuoma’s (Intermediate) condensation.

We have so far exploit and discussed various methods of evaluating the determinant of large
matrices, via the method of Chio, Dodgson, and Ufuoma with the aim of introducing a new

condensation method of equivalent computational complexity in this chapter.

Now, recall in chapter three of this thesis, from equation (3.3) we have

n—-1

(o) %@ = (layy i)

a. . a‘ .
i1 i+1j i+l g

By fixing row R; = Ry V i and column C; = C; V j simultaneously we obtained the representation
in equation (3.4) given by

aip Ayji1 (1

Aiv11 Ai+1j+1

)

(Rl )x (@ Gani=(

Ri1 ij=1

Which yield the Chio’s condensation,

Furthermore, if we fix only column C; = C; V j. Then we obtained the representation in equation

(3.5) given by

n-1

( Ri )x (€1 G):= (| i Hj+1 D
L

a; Qs
i+1 +11 i1+1j+1 =1

Which yield the Ufuoma’s (Intermediate) condensation.
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For the purpose of this research we proceed to give a proof of obtaining the determinant of n-
square matrix for a new representation by fix only row R; = R, V i in equation (3.3) so that we

have

Ry aqj A1j+1
x (G )=
(Riﬂ) @ G Aiv1j  Qit1j+1

):H (3.6)

j=1
We now state the theory for this new condensation known as Okokwu condensation method (OC)

or New Intermediate condensation method (NIC) as follows.

Theorem 3.1 (Okokwu condensation). Let A, be an n X n matrix (i.e. 4, = (aij)nxn)’ then the

(first) Okokwu’s condensations of the matrix 4,,is an (n — 1) X (n — 1) matrix defined by

OC(An) = Ap-1
|a11 a12| |5112 a13| |a13 a14| | A1n-1 a1”|
A1 Azzl lazz dps3 A3 Qg Q2(n-1) %2n
|a11 a12| |a12 a13| |a13 a14| | Ain-1 a1n|
az; Qasz az; das3 a3z Qa3g A3(n-1) Gd3n
= |a11 a12| |a12 013| |a13 a14| |a1n—1 a1n|
Ag1 Q42 Aygy Q43 Agz  Agq Aa(n-1) G4n
|a11 a12| |a12 a13| |a13 a14| | Ap-1 Qn
a a a a a a a a |
nl n2 nz2 n3 n3 n4 n(n-1) nn (n=1)x(n-1)
where
det(4,) = det(A,_1) _ det(4,_q) B =0V
n’/ — 1 ’ 1j ]

Q2 X Qg3 X+ X Ay(n-2) X A1(n-1) H;':z aqj
The above process is continued until we obtain a 2 X 2 matrix whose determinant is easily

determined.
Proof

The condensation condition equation defined column-wise (for our new colums) is

aqi C;
Y _ 9 (3.7)
Qi1 G

= a1jCj11 = A1j41C

= 1611 — a1j41G =0

ayj A1j+1
= —yja (cj -— cm) =0 oray; (cm - a;cj) =0

Aqj1 1j
aq; Qaqj
] _ 1j+1 _
== — (C} — —C}+1) =0 or (C]'+1 — _C}) =
A1j+1 Qqj

Now we define the new j™ column Cj"ew for the condensation process as follows
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ay;
J -
- (C} - Cj+1) ii=1
new A1j+1
Cj = a . (3'7)
1j+1
(Cjﬂ— C‘J-);]—Z,3, ,n—1
alj
So that by applying (3.7), it follows that
a1
_ (61 _4 Cz)
a1z
a3
CS - _CZ
aq,1 A1j+1 Az
— Cl __CZ C 1 — C = a =
aqp I 1j / C —MC
J =23 ..n—1 4 3
(j=2,3,-n-1) a3
1n
Cn - Cn—l
Ain—1
a1 aiz Q14 Ain
|_(Cl__CZ) G- —0C C——0G G — Cp-a
a1z 12 aq3 A1n-1
(a al.la ) a a13a a aMa a A1n “
—\ %21 T T Y22 23 — T U2z U4 — T Uz3 2n — 2(n-1)
aqz a2 a3 A1pn—1
(a a1 ) a a13a a a14a a Ain a
—\431 — 23 33 — 7 U3z €34 — —/ U3z3 L W3n T 3(n-1)
2F) 12 ai3 A1n—1
= (a 4, ) a Rz Gt a i L
—\ Q41 — 24| Q43 — 42 Q44 — 43 .. Qgn — 4(n—1)
aqz Q12 a3 Ain-1
a1 13 A14 A1n
—\Qn1 — Qzp ) An3 — Apz QAna — Qn3 . Qnun — Ann-1)
gz a1z aq3 A1n-1 (n-1)x(n-1)
—(ay1ay, —aq1a
( 21712 11 22) Q3012 — Q13072 4013 — Q14023 Aonin-1 — A1nA2(n—-1)
a
12 ay3 aq3 A1p—1
—(a31a12 - a1,1“23) A33097 — Q13033 A34093 — Q14033 A3nA1n—1 — AnA3(n-1)
Ay A1z as3 Ain—1
= —(a41a12 _a1,1a24) Q43093 — A13047 Q44093 — Q14043 AinA1n—1 — U nl4(n-1)
a a Ay
a,, 12 13 1::1 1
(a a ’ e ) An312 — A13an2 Anaiz — A14dn3 ™ AupGin-1 — A1nln(n-1)
—\n1Q12 — 41,142
T 2 a2 a3 A1p—1
Q12 (n=1)%(n-1)
1 |a11 a12| 1 |a12 a13| 1 |a13 a14| 1 | Ain—1 a1n|
Ay, 1921 Al aq,1%2 Gzl g3ld23 Az Ayp_q 1%2(n-1) G2n
1 |a11 a12| 1 |a12 a13| 1 (a3 a14| 1 | Ain—1 a1n|
apz 131 a3zl g, 1032 A3zl g ;1033 Q434 Aip_q 143(n-1) A3n
=11 |a11 a12| 1 |a12 a13| 1 a3 a14| 1 | Ain-1 a1n|
A 1341 Al g, 1042 Azl g 41043 Q4 Ayp_q 1%4(n-1) Qan
1 |a11 a12| 1 |a12 a13| 1 |a13 a14| 1 | Ain-1 a1n|
a _ a
a1z ap1 An2 iz Apz QA3 a3 Apz Ana Ain-1 n(n-1) nn (n-1)x(n—1)
1 1 1
= — x —_— )( —_—
a2 4z 413
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|a11 ap |a12 a13‘ |a13 a14‘ | Qin-1 Qn
a1 axpl laxp azl lazs ax G2(n-1) Q2n
|a11 alz‘ |a12 ﬂls‘ |a13 a14‘ | in-1  Q1n
1 |las1 aszzl laszx agsl lasz ass A3m-1) A3n
X P aj; apz aj;z A4z a3 Q14 | Aipn-1  Qn
n-1llay Q2] Qs g3l a4z Qgs Aan-1) Qan
|a11 aip |a12 a3 |a13 a14 A1p-1  An
A1 Ap2 Ap2 Ap3 a3 QApa Apn-1) Ann (n=1)x(n=1)
Thus
1 1 1 1 1 1 1
l[Anl = agp |[— X —x—+-x |[Ap-1l ] =—x—"=-x |[An-1l
A1y Q1 Qg3 A1n—1 A1y Qg3 A1n—1
Which is equivalent to
det(An_1) det(A,_1)
det(4,) = = T ;apF0V)

@1z X Q13 X =+ X Qyn-z) X Q1) [175; aqj

As such, for the rest of the condensation we have

det(A4,,— - .
der(a,) = S8n=), 7 el al # 0

det(4,,_ - i
det(p) = 18z 7, iz ad; a2 0v )
det(A4,- - i
dertn-g) = 9502y < Tl ol a0V
det(4,,_,_ . k- i
det(A,_i) = %; Mps1 = ?25‘ 1afj+1 ai‘}*l *0Vj,k

Now, if we stop at the kth condensation which is assumed to be the last condensation, then we

must have that n —k — 1 = 2, which implies that k = n — 3. Then it follows that the last kth

condensation is equivalent to

(8]

det(ay) = 28A2),

n-2

So that taking all together we have

1 1 1 det(Az) det(Az)
det(4,) =—X—X—xX -+ X == T, #0Vp
mp Ty T3 Tn—2 poiTp

This complete the proof.

We state the following corollary which shows the relationship between Ufuoma condensation

method and the newly introduced Okokwu condensation method (OCM).

Corollary 3.2. Let 4,, be an n X n matrix (i.e. 4, = (aij)nxn)’ then the followings relation are

equivalent for Okokwu’s condensation (OC) and Ufuoma’s condensation (UC) of the matrix A,.
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i) 0C(4,) = UC(AT)
i) 0C(AT) = UC(4,)

Example 3.3 Determine the determinant of the given matrices by Okokwu method

1 -2 31
>3 9 4 2 -10
1) (2411 Dl o 2 15
168 -3 3 1 2
Solution
a4
539 53 9 | |4 11
2411 ocilz2411 | | (14 —3)
step1. 2l _Mes/ 16 8/) _ 16 681/ \27 —30
=y al, 3 3 3
14 — 14 -3
s _ 06{(27 -30 } 27 =301 _ —420+81 _
tep 2: 5= = =—-113
3 ]'[j=2a1] 3 3
2)
P . 12
1 -2 3 1 | _2| | 3 1
ocll %+ 2 —12 0 2 2 1 15
0 2 1 -2 -2 3| |31
510C{A4}_ -33 1 2 3||3 1||12
te 4-lgl al, x al a —-2x3
j=2%1j 12 13
10 —4 1
(2 -8 14)
_\3-115
-6
10 —4| |
10 -4 1 8 14
oc[( 2 -8 14)] | | (—72 —48) (—72 —48)
Step2: 3-115 3—11 —115 _\-122 —9/) _\-122 -9
- =6 [}z;af; —6ai, —6 X (—4) 24
72
oc 648 + 5856 —5208
Step 3: {(—122 -9 } |—122 —9 _ _ 17

24 [l ay; 24 24 24
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We wish to recommend that this method of Okokwu’s condensation be employed over Dodgson’s
condensation in the computation of determinant of square matrices owing to its minimal
computational complexity as will be demonstrated in our next research work. Finally, For the
purpose of feature research in this condensation processes we formulate the following unification
of the processes considered so far. Let the ordered pair (p,s),(q,t), (a, ) be such that
lp—ql=a; =>p—-q=aorp—q=—a; =>p=q+aorq=p+a
|s—t|l=p;=s—t=Bors—t=—F;=s=t+fort=s+p
Where p, s, q,t,a, B € [n].

In particular forq =p+aandt = s + f let
R, Ay Aps+p
x (Cs  Csip)i= P P 3.8
(Rp+a) € Coep) (|a19+cz,s ap+a,s+ﬁ|)p'siaﬁal (3.8)
Observe that by equating any two of the running variables p, s, @, f equals to one, we obtain

various representations of the condensation processes discussed above. Thus

Chio;p=s=1
R Dodgson;a=p=1
P C, C 1= ’
(Rp+a) * (G5 Coup): Ufuoma;a=s=1
Okokwu;p=p=1

The above representation in equation (3.8) which is the generic representation is of more general
than the one in equation (3.2). By this, the following research question need to be considered in
the feature; i) the implication of this representation if the running variable are not uniformly equal
to one? ii) are there other prescribed values for the running variables other than one that could lead
to successful evaluation of the determinant of a square matrix minimal computational complexity?
iii) if the answers to these questions above in i) and ii) are in the affirmative sense, then what are

the theoretical implications of the results?
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