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Abstract  

Dodgson’s condensation method has remained one of the remarkable methods 

employed for evaluating determinant of matrices of large order, and for solving 

large system of linear equation based on its suitability in combining with Cramer’s 

method. In the course of evaluating determinant using Dodgson’s condensation for 

a very large matrix one may run out of track in identifying the interior of the matrix 

that serve as a divisor for a particular condensed matrix. It is important to keep a 

check on this happenstance during computation by devising a suitable iteration 

scheme that implores Dodgson’s condensation processes so as to do away with the 

concept of Duplex Fraction recently introduced by a researcher in a bid to compute 

determinant of matrices with large order. Thus, the iteration scheme proposed 

generalizes this concept naturally and ultimately yields the value of the required 

determinant of the matrix without performing any elementary matrix operations on 

the row or column of the matrix.   

Keywords and Phrase: Dodgson’s condensation, determinant, matrix, Duplex 

Fraction, order of matrix 

 

1.  Introduction and Definitions 

Over the years, determinant of a matrix has remained a useful tool in 

mathematics and other related fields of study. The stability of a 

mathematical model, by using differential equations, is determined by the 

behaviour of the eigen values of the fundamental (resolvent) matrix. 

Undoubtedly, these eigen values are obtained by finding the determinant of 

the fundamental matrix. Moreover, determinant is used to establish the 

linear independency of the column vectors of a square matrix and linear 

independency of set of solution to 𝑛 order ordinary differential equations. 

Geometrically, the row entries of a matrix of order 3 represent the edges of 

a parallelopiped in Euclidean space. Thus, the volume of such 

parallelopiped is the determinant of its edges. 

Finding the determinant of a square matrix is one of the prime topics in 
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Linear Algebra. Many methods for computing the determinants of square 

matrices include Sarrus' rule and Triangle's rule for matrices of order 3, 

Cofactor's method, Chio's condensation method and Dodgson's 

condensation method. 

 
2. MATRIX CONDENSATION PROCESS 

To evaluate a determinant, Chiò’s and Dodgson’s identities both condense an 𝑛 ×

𝑛 determinant in a sequence of steps so that ultimately only the calculation of a 

2 × 2 determinant is required. Assuming the entries of the original determinant 

are integers, in both identities at each step of the reduction, all entries in the 

determinant remain integers. Non-zero pivots must be chosen at each step in the 

reduction. Chiò’s and Dodgson’s determinantal identities, derived from quite 

different sources, often have been treated as the same identity perhaps because 

they are both “condensa-tion” methods. Computationally, they both reduce the 
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evaluation of an n×n determinant to the computation of a 2 × 2 determinant. As 

an efficient computational method, Chiò’s algorithm is clearly the better of the 

two. For hand calculation of the determinant of a matrix of order greater than 

three, either of the two is much easier to carry out than the standard Laplacian 

method.  In large numerical calculations where Gaussian elimination is the 

algorithm of choice, evaluating a determinant requires 
1

3
𝑛3 computations. Using 

either Dodgson’s or Chiò’s algorithm requires 𝑐𝑛3 computations, where the 

constant c is larger for Dodgson’s method (not including any row or column 

exchanges) than for Chiò’s. In a nonparallel lsetting the computational 

complexity of each, O(𝑛3), is the same as the computational complexity of 

Gaussian elimination. Both methods can be implemented profitably in a parallel 

setting. However, the two determinantal identities constructed in the mid 

nineteenth century, Chiò’s and Dodgson’s, from the perspective of their origins 

has been linked to the earlier work (Sylvester, 1851) and  (Jacob, 1841). 

However, we choose to investigate on the iteration scheme for Dodgson’s 

condensation process. 

2.1 Dodgson's Condensation Method  

In 1866, an English writer Charles Lutwidge Dodgson popularly known as Lewis 

Carroll (1832-1898) gave a method of computing the determinant of a square 

matrix by condensation. The method proves to be effective as well as minimizes 

errors before arriving at the solution (Leggett, Perry, and Torrence, 2009). 

Dodgson condensation reduces the matrix into 2×2 submatrices for easy 

computation of determinants. The method reduces the risk of miscalculation as it 

is bound to divide the determinant of the submatrices by interior elements 

(Abeles, 1986). The fatal of Dodgson's condensation defect is that the 

determinant of an interior matrix must not be zero because dividing the 

determinant of the minors by zero makes the solution indeterminate (Abeles, 

1994). The advantage of Dodgson condensation is that the determinant of a 

square matrix is a rational function of all its connected minors of any two 

consecutive sizes (Schmidt and Greene, 2011). The fatal defect of Dodgson 

condensation has a remedy like row (column) permutations, though it may not 

always work if there are many zero entries in the matrix or the determinant of 

interior matrix zero – this can happen even if no zeroes appear in the interior of 

the matrix (Abeles, 2008; Robbins, 2005). In Dodgson’s condensation, each 

smaller matrix contains the 2 × 2 connected minors of the previous iteration’s 

matrix. The 2 × 2 connected minors are the determinants of each 2 × 2 

submatrices consisting of adjacent elements of the larger matrix. Beginning with 

the second stage of iteration, each of these minors is divided by their central 

element from two stages previous. In this case, Dodgson suggested replacing the 

zero element with a nonzero element of the matrix by rotating columns or rows 

and then proceeding with condensation. If all elements of the matrix are zero, 

then the matrix is trivial, and its determinant is zero. For a given 𝑛 × 𝑛 matrix, a 

minor is any (𝑛 − 𝑚) × (𝑛 − 𝑚) matrix formed by deleting 𝑚 rows and 𝑚 

columns from 𝐴. A complementary minor is the resulting 𝑚 × 𝑚 matrix 

diagonally adjacent to the minor matrix while a consecutive minor is one in which 
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the remaining rows and columns in the minor were adjacent in the original 

matrix. interior of 𝐴 is the (𝑛 − 2) × (𝑛 − 2) consecutive minor that results 

when the first and last rows and columns of matrix 𝐴 are deleted, see (Abeles, 

1986; Rice and Torrence, 2006, 2007).  

As it is well-known, Dodgson's condensation process is also a specialized case of 

Jacob’s theorem (Harwood, et al. 2016). The algorithm involved is one that 

consider computational simplicity, which is achieved by restricting itself entirely 

to the calculation of 2 × 2 determinants, which usually consists of the following 

steps (Harwood, et al.  2016): 

1. Use elementary row and column operations to remove all zeros from the 

interior of A. Here, the interior of an 𝑛 ×  𝑛 (𝑛 ≥  3) matrix 𝐴, or 𝑖𝑛𝑡𝐴, is the 

(𝑛 − 2)  × (𝑛 − 2) consecutive minor that results when the first and last rows 

and columns of matrix A are deleted. 

2. Find the 2 ×  2 determinant for every four adjacent terms to form a new (𝑛 −

1)  × (𝑛 − 1) matrix 𝐴𝑛−1. 

3. Repeat this step to produce an (𝑛 − 2)  × (𝑛 − 2) matrix, and then divide 

each term by the corresponding entry in the interior of the original matrix 𝐴, to 

obtain matrix 𝐴𝑛−2. 

4. Continue “condensing" the matrix down, until a single number 𝐴1is obtained. 

This final number will be the determinant of |𝐴𝑛|.  

Theorem 3 (Dodgson’s condensation theorem) Let A be an 𝑛 × 𝑛 matrix. After 

𝑘successful condensation, Dodgson produces the matrix 
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Then it follow that 

𝐴𝑛(1,1)𝐴𝑛−2(2,2) = 𝐴𝑛−1(1,1)𝐴𝑛−1(2,2) − 𝐴𝑛−1(2,1)𝐴𝑛−1(1,2) 

Which implies that the following identity representation of Dodgson’s 

condensation holds,  

 

For an 𝑛 × 𝑛 matrix 𝐴, let 𝐴𝑟(𝑖, 𝑗) denote the 𝑟 by 𝑟 minor consisting of 𝑟 

contiguous rows and columns of 𝐴, beginning with row 𝑖, column 𝑗 (Amdeberhan 

and Ekhad, 1997). Note that 𝐴𝑛−2(2,2) is the central minor or interior elements; 

𝐴𝑛−1(1,1), 𝐴𝑛−1(2,2), 𝐴𝑛−1(1,2) and 𝐴𝑛−1(2,1) are the respective northwest, 

southwest, southeast, northeast, and southwest minors, see (Abeles, 2014; 

Amdeberhan, 2001; Muir, 1881) and the references therein. According to 

(Bressoud and Propp, 1999),  

“Although the use of division in Dodgson condensation may appear to be a 

drawback, it serves as a useful form of error checking for calculations done by 

hand using integer matrices. When the algorithm is carried out correctly, all the 

entries of all the intervening matrices are integers, making it impossible to know 

that a mistake has been made when a division does not come out evenly. The 

approach is helpful for computer calculations as well, particularly”. 

In the 20th century matrix begins to have some reasonable extent due to its 

applications in different fields which emerged a new field in mathematics called 

matrix theory. Since Laplace expansion is a building block for other methods of 

determinant, only a few of the contributors to the determinant of a matrix in 

mathematics will be discussed. (Bareiss, 1968) worked on improving the 

computation of determinants by minimizing the complexity time of the 

condensation. Although Bareiss algorithm or Montante’s method is based on row 

reduction, it can also be proven using Sylvester’s identity(Yap, 2000). The Chinese 

remainder theorem has been used to compute some cases of determinants (Pan, Yu, 

and Stewart, 1997;  Robbins and Rumsey, 1986) made important studies on the 

iteration of the Dodgson’s Determinantal Identity (DDI) to the discovery of 

Alternating Sign Matrix Conjecture (ASM). The iteration was from the recurrence 

of the Laurent polynomials (when 𝜆 = −1) to form lambda determinant of matrix 

(Mills, Robbins, and Rumsey, 1986). An Alternating Sign Matrix has +1, −1, 0 as 

an element in every row and column and thus, the ASM conjecture is given as  

𝐴𝑛 = ∏
(3𝑗 + 1)

(𝑗 + 𝑛)

𝑛−1

𝑗=0

                                                                (2.9) 
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This completes the Prove. We noticed that theorem 3.5 representation look rather 

subtle and complex for application purposes, hence we give an equivalent 

representation of the result in theorem 3.5 which could be written in some worth 

friendlier manner, we do that in the corollary that follow. 

COROLLARY 3.6 Given the result of theorem 3.5 then for every 𝑛 ≥ 2 its 

equivalent representation is given by 
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5. CONCLUSION  

The result of our theorem is not restricted to any particular order of matrix, 

hence it is applicable to any arbitrary square matrix of order n. Hence the 

results of our research work generalize some related works in the literature, 

in particular that of (Farhadian, 2016, 2017; Salihu, 2012, 2019). 
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