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Abstract

Dodgson’s condensation method has remained one of the remarkable methods
employed for evaluating determinant of matrices of large order, and for solving
large system of linear equation based on its suitability in combining with Cramer’s
method. In the course of evaluating determinant using Dodgson’s condensation for
a very large matrix one may run out of track in identifying the interior of the matrix
that serve as a divisor for a particular condensed matrix. It is important to keep a
check on this happenstance during computation by devising a suitable iteration
scheme that implores Dodgson’s condensation processes so as to do away with the
concept of Duplex Fraction recently introduced by a researcher in a bid to compute
determinant of matrices with large order. Thus, the iteration scheme proposed
generalizes this concept naturally and ultimately yields the value of the required
determinant of the matrix without performing any elementary matrix operations on
the row or column of the matrix.

Keywords and Phrase: Dodgson’s condensation, determinant, matrix, Duplex
Fraction, order of matrix

1. Introduction and Definitions

Over the years, determinant of a matrix has remained a useful tool in
mathematics and other related fields of study. The stability of a
mathematical model, by using differential equations, is determined by the
behaviour of the eigen values of the fundamental (resolvent) matrix.
Undoubtedly, these eigen values are obtained by finding the determinant of
the fundamental matrix. Moreover, determinant is used to establish the
linear independency of the column vectors of a square matrix and linear
independency of set of solution to n order ordinary differential equations.
Geometrically, the row entries of a matrix of order 3 represent the edges of
a parallelopiped in Euclidean space. Thus, the volume of such
parallelopiped is the determinant of its edges.

Finding the determinant of a square matrix is one of the prime topics in
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Linear Algebra. Many methods for computing the determinants of square
matrices include Sarrus' rule and Triangle's rule for matrices of order 3,
Cofactor's method, Chio's condensation method and Dodgson's
condensation method.

Let M,,(R) be the set of square matrices of order n , so that if A, € M, (R) then

An1 Qpy QApz = Qpp

Definition 3.1 A determinant of A,, (see (Hamiti, 2002; Barnard and Child, 1959; Scott, 1904,
Ferrar, 1957) is

Q11 Qg2 Qg3+ Q1
dz1 Qpp QApz--lap
dEt(An) = |An| = (@31 U3z 433 d3n| = z Hjiizfardin A1)y A2, A3 Anj, (1'1)
g : P : j1jzj3"'jne Sn
Anp1 QAp2 An3 " Apn

Summing over the permutation set (symmetric permutation group) S, where

_ {+1; if jij2jz jn is an even permutation
Hisiaisin = —1; if jifajz " jn is an odd permutation

It is also possible to expand a determinant along a row or column using Laplace’s formula, which

is efficient for relatively small matrices. Which is given by

n n
Z a;Cij = Z(_l)iﬂauMu Vi (row wise)
j=1 j=1
det(4,) = N . . 12)
Z a;;Cj = Z(_l)i+jaijMij Y j (column wise)
i=1 i=1

Where the C;; represent the matrix cofactors, i.e., Cj; is (—1)¥*/ times the minor M;; which is the
determinant of the matrix that results from A,, by removing the ith row and the jth column, and n

is the size of the matrix.

2. MATRIX CONDENSATION PROCESS

To evaluate a determinant, Chio’s and Dodgson’s identities both condense an n X
n determinant in a sequence of steps so that ultimately only the calculation of a
2 X 2 determinant is required. Assuming the entries of the original determinant
are integers, in both identities at each step of the reduction, all entries in the
determinant remain integers. Non-zero pivots must be chosen at each step in the
reduction. Chio’s and Dodgson’s determinantal identities, derived from quite
different sources, often have been treated as the same identity perhaps because
they are both “condensa-tion” methods. Computationally, they both reduce the
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evaluation of an nxn determinant to the computation of a 2 x 2 determinant. As
an efficient computational method, Chio’s algorithm is clearly the better of the
two. For hand calculation of the determinant of a matrix of order greater than
three, either of the two is much easier to carry out than the standard Laplacian
method. In large numerical calculations where Gaussian elimination is the

algorithm of choice, evaluating a determinant requires §n3 computations. Using

either Dodgson’s or Chid’s algorithm requires c¢n® computations, where the
constant ¢ is larger for Dodgson’s method (not including any row or column
exchanges) than for Chid’s. In a nonparallel Isetting the computational
complexity of each, O(n3), is the same as the computational complexity of
Gaussian elimination. Both methods can be implemented profitably in a parallel
setting. However, the two determinantal identities constructed in the mid
nineteenth century, Chio’s and Dodgson’s, from the perspective of their origins
has been linked to the earlier work (Sylvester, 1851) and (Jacob, 1841).
However, we choose to investigate on the iteration scheme for Dodgson’s
condensation process.

2.1 Dodgson's Condensation Method

In 1866, an English writer Charles Lutwidge Dodgson popularly known as Lewis
Carroll (1832-1898) gave a method of computing the determinant of a square
matrix by condensation. The method proves to be effective as well as minimizes
errors before arriving at the solution (Leggett, Perry, and Torrence, 2009).
Dodgson condensation reduces the matrix into 2x2 submatrices for easy
computation of determinants. The method reduces the risk of miscalculation as it
is bound to divide the determinant of the submatrices by interior elements
(Abeles, 1986). The fatal of Dodgson's condensation defect is that the
determinant of an interior matrix must not be zero because dividing the
determinant of the minors by zero makes the solution indeterminate (Abeles,
1994). The advantage of Dodgson condensation is that the determinant of a
square matrix is a rational function of all its connected minors of any two
consecutive sizes (Schmidt and Greene, 2011). The fatal defect of Dodgson
condensation has a remedy like row (column) permutations, though it may not
always work if there are many zero entries in the matrix or the determinant of
interior matrix zero — this can happen even if no zeroes appear in the interior of
the matrix (Abeles, 2008; Robbins, 2005). In Dodgson’s condensation, each
smaller matrix contains the 2 X 2 connected minors of the previous iteration’s
matrix. The 2 X 2 connected minors are the determinants of each 2 x 2
submatrices consisting of adjacent elements of the larger matrix. Beginning with
the second stage of iteration, each of these minors is divided by their central
element from two stages previous. In this case, Dodgson suggested replacing the
zero element with a nonzero element of the matrix by rotating columns or rows
and then proceeding with condensation. If all elements of the matrix are zero,
then the matrix is trivial, and its determinant is zero. For a given n x n matrix, a
minor is any (n —m) X (n —m) matrix formed by deleting m rows and m
columns from A. A complementary minor is the resulting m x m matrix
diagonally adjacent to the minor matrix while a consecutive minor is one in which
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the remaining rows and columns in the minor were adjacent in the original
matrix. interior of A is the (n —2) x (n — 2) consecutive minor that results
when the first and last rows and columns of matrix A are deleted, see (Abeles,
1986; Rice and Torrence, 2006, 2007).

As it is well-known, Dodgson's condensation process is also a specialized case of
Jacob’s theorem (Harwood, et al. 2016). The algorithm involved is one that
consider computational simplicity, which is achieved by restricting itself entirely
to the calculation of 2 x 2 determinants, which usually consists of the following
steps (Harwood, et al. 2016):

1. Use elementary row and column operations to remove all zeros from the
interior of A. Here, the interior of an n X n (n = 3) matrix A, or intA, is the
(n —2) X (n — 2) consecutive minor that results when the first and last rows
and columns of matrix A are deleted.

2. Find the 2 x 2 determinant for every four adjacent terms to form a new (n —
1) x (n —1) matrix A, _;.

3. Repeat this step to produce an (n —2) X (n — 2) matrix, and then divide
each term by the corresponding entry in the interior of the original matrix A, to
obtain matrix 4,,_,.

4. Continue “condensing" the matrix down, until a single number A,is obtained.
This final number will be the determinant of |A,,].

Theorem 3 (Dodgson’s condensation theorem) Let A be an n x n matrix. After
ksuccessful condensation, Dodgson produces the matrix

| A1k, 1ot | |Aveoksrn, 2ookez | o [Aveiers, neleon |
Aln-K) — |A2,---,k+2, 1,~-,k+1| |A2,---,k+2, 2,---,k+2| |A2,--~,k+2, n—k,n-,nl
|An—k,---,n, 1,--~,k+1| |An—k,---,n, 2,---,k+2| |An—k,~-,n, n—k,-‘-,nl

Whose entries are the determinants of all (k + 1) X (k + 1) contiguous submatrices of A. So that

in particular if k = 1, we have the following corollary

Corollary 3.2. (Dodgson's Condensation ). Let 4, be an n X n matrix (i.e. 4, = (aif)nxn)’ then

the (first) Dodgson's condensations of the matrix A, is an (n — 1) X (n — 1) matrix defined by

D(Ay) = Anq
a;q Ay | a3  Aq3 | Ay(n-2) Ai(n-1) A (n-1) Qin
Ay QAyy Ay, Ayz dz(n-2) A2(n-1) az(n-1) Yan
az, a22| Az, a23| Az(n-2) Az(n-1) A2n-1) Yon
asz; Qasp azp Adzz

A3(n-2) A3(n-1) a3z(n—1) Q3n
‘a(n72)1 An-2)2| |Yn-2)2 Gm-2)3 An-2)(n-2) An-2)(n-1)
An-11  An-12| |An-1)2 An-1)3 An-1)(n-2) A(n-1)(n-1)
|a(n71)1 a(n71)2| |a(n71)2 a(n71)3| o 4n-nm-2)y Am-n(n-1)
Any An2 An2 Qn3 An(n-2) An(n-1)

A(n-2)(n-1) An-2)n |

An-1)(n-1) Hn-1)n

An-1)(n-1) Gm-1)n
An(n-1) Ann

(n-1)x(n-1)
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Then it follow that
An(LD A5 (2,2) = Ap_1 (LD A1 (2.2) = Ap_1 (21451 (1,2)

Which implies that the following identity representation of Dodgson’s
condensation holds,

det(4) = det(4,(1,1))

det(Ap_1(1,1))det(4,-1(2,2)) — det(An_1(2,1))det( Ay_1(1,2))
- det(A,_2(2,2))

2.7)

For an n x nmatrix A, let A,(i,j) denote the r by r minor consisting of r
contiguous rows and columns of A, beginning with row i, column j (Amdeberhan
and Ekhad, 1997). Note that A4,,_,(2,2) is the central minor or interior elements;
An_1(1,1),4,,21(2,2),4,,_1(1,2) and A,,_1(2,1) are the respective northwest,
southwest, southeast, northeast, and southwest minors, see (Abeles, 2014;
Amdeberhan, 2001; Muir, 1881) and the references therein. According to
(Bressoud and Propp, 1999),

“Although the use of division in Dodgson condensation may appear to be a
drawback, it serves as a useful form of error checking for calculations done by
hand using integer matrices. When the algorithm is carried out correctly, all the
entries of all the intervening matrices are integers, making it impossible to know
that a mistake has been made when a division does not come out evenly. The
approach is helpful for computer calculations as well, particularly”.

In the 20th century matrix begins to have some reasonable extent due to its
applications in different fields which emerged a new field in mathematics called
matrix theory. Since Laplace expansion is a building block for other methods of
determinant, only a few of the contributors to the determinant of a matrix in
mathematics will be discussed. (Bareiss, 1968) worked on improving the
computation of determinants by minimizing the complexity time of the
condensation. Although Bareiss algorithm or Montante’s method is based on row
reduction, it can also be proven using Sylvester’s identity(Yap, 2000). The Chinese
remainder theorem has been used to compute some cases of determinants (Pan, Yu,
and Stewart, 1997; Robbins and Rumsey, 1986) made important studies on the
iteration of the Dodgson’s Determinantal Identity (DDI) to the discovery of
Alternating Sign Matrix Conjecture (ASM). The iteration was from the recurrence
of the Laurent polynomials (when A = —1) to form lambda determinant of matrix
(Mills, Robbins, and Rumsey, 1986). An Alternating Sign Matrix has +1, —1, 0 as
an element in every row and column and thus, the ASM conjecture is given as

n-1
~ 1—[ 3j+1)
An ) j=0 m (29)
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Within a decade (Zeilberger, 1997) published a combinatorial proof of DDI. A better algorithm
than simple Dodgson’s condensation is the recurrence of DDI. Though DDI requires more
calculation yet the computational complexity of DDI and Dodgson condensation remain the same
(Francisco Neto, 2015; Grcar, 2012) asserted that several authors including Charles Dodgson
reinvented Chio’s method of evaluating the determinant. However, (Abeles, 2014) stated that
Dodgson’s identity was a result of a theorem of Jacobi while Chio’s identity was from a theorem

of Sylvester.

Theorem 5 (Jacobi’s theorem on adjoint determinant) Let A be an n X n matrix, let (Aij) be an
m x m matrix of A, where m < n, let A'Uv be the corresponding m x m minor of A" and let Aa be

the complementary (n —m) X (n — m) minor A. Then.

det(A};) = (detA)™ 'det(A}; (2.10)

By Laplace expansion A.A" = det (A).I Thus, det(A.A") = det(A)det (A") = (detA)™

It is important to observe that, Dodgson’s method is a unique case for both Desanot and Muir's
law of extensible minors and Jacobi adjoint matrix theorem. More precisely for Dodgson/Muir

determinantal identity is

Zaesk(—l)l(g) H?:l dEt(Aj,w,kH,a (), k+1 )

detA = =]
dEt(Ak+1,---,n, k+1---,n)

(211)

From the above equation, if k = 2 then it turns out to be Dodgson's determinantal identity (DDI).
Other special cases where Dodgson's identity was derived are Lagrange, Cauchy and Minding, and
Sylvester's identity (Amdeberhan and Ekhad, 1997). It was (Brualdi and Schneider, 1983) that
successfully linked Chio and Sylvester's identity by considering Schur’s identity as follows:

3. MAIN RESULT

At this point we are now ready to give some important theorems that justify the purpose of this
research work as stated earlier before then we consider the definition.

Definition 3.1 Let (DM),(R) be the set of square matrix of order k obtained from Dodgson
condensation process, if A, € M, (R) with non-zero/non-singular interior points and By €
(DM),(R) then forevery i,j = 1,2,-++, k

By b;; ) . ) ,
- = iff ord{int(4,)} = k; det{int(4,)} # 0
int(A,) (a(n—k—1+i)(n—k—1+j) i /1 " "

THEOREM 3.2 If A,, € M,(R) be a square matrix of order n with non-zero interior points and
D™(A,) is the mth times application of the Dodgson condensation on A, is such that for every
j=n—-2,n-3n—4,--,2,1 then the iteration scheme defined by
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Az’l lf n=2

Anj =Y D(Anj11)

— "7 ifn=3
int(Anj+2) 4

Determines the determinant of the matrix A, as A, ;.
Proof: We shall prove this by induction.

Suppose n = 2. Then

An,j_1 _ D(An,j); N AZJ _ D(Azjz) -D ( a1 dq2 ) _ | 11 Q12

= aq109, — Q1A
ayq Aoy azq a22| 11%22 12%21

Suppose n = 3. Then

_ D(43,) D (D(A”)) _ D?(435)
Cint(Ass)  int(4s3)  int(4ss)

D(As ;
DlAaje) =1 = Ay,

int(As,42)

3,j

|a11 aiy | | a1y A13 |
a11 Q13 Qq3 Ay Ayy | [ Az ays
D21 [ @z Ay Q3 b |a21 az; | |a22 a3 |
_ Q31 Gz Q33 _ 31 A3z | 1Az, azj _
11 Q12 Qg3 Az
int a1 Az Ap3
a3y A3z 433
| a1 Q12 | |a12 a3 |
i A1 G221 13z Aas || _ (1.3)
Az |a21 a22| |a22 Qys3 |
a3y A3z | 1azz azz
i“ 11 Qg2 | | Uzz Qz3 | _ | 12 Q43 | | Q21 Q32 ” _
Ay, Ll dz1 A2z 11 a3z Q33 Azz Gz llaz, azz 1l

P [(a11a22 = @12021)(A02033 — Ap3a33) — (A12023 — A13022)(Az103; — Gp2a31)] =
22

1 (11822022033 — Q1205122033 — Q11022023033 + A12031023033) ]
Ayy | = (01202302135 — A13023051A37 — Q120730570531 + A1302,0570537)

1 [ (11032057033 — Q12021073033 — A11Up3073033 + Q13071073037 ] _
Uyy L= A12023021032 + Q13022021032 + A1203022031 — A13022022031
1 [ Q11022022033 — Q12021022033 — Q110220230432 ] .
Ay 1113022021037 + Q12023022031 — 13022072031
1 a Q11022033 — Q120321033 — Q11023033 ] .
22 |+013071037 + Q12023031 — Q13052031

sz

Q11022033 — Q12021833 — Q1123032 ] _
+a1305103; + Q12053037 — Q13032031

ay1 Q12 Q13
Ap1 Az Qa3 | = |As]
Q31 A3z Q33

‘Which is true
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Similarly, suppose n = 4. Then

_ D(Asjea) . _

Y int(Agyn)

2,1

=

_ D(Asy) D (P(444)) _D*(Ass) . D(As2)
T int(Age)  int(Age)  int(Agy)’ T int(Ays)
Now observe that
| 11 Q1 | | A1 Aq3 | | A13 Q14 |
@i Qpy Gis Qi Az1 Az Az A3 A3 Ay
Qz1 Q22| | U22 Q23| | Q23 Q24
D2 dzy Az A23 Qa4 |a31 a32| |a32 a33| |a33 a34|
5 Qazq A3y Q33 d34 |a31 a32| |a32 a33| |a33 a34|
_ D (A4,4) _ Qg1 Qg Qg3 Ogq _ Ayq Qg | 1Qgp Ay | | Qg3 Qyg
b2 int(Ags) ai1 dip A1z A14\) (azz az3 )
nt 1 App Q3 QApy a3z dzz
m Q31 A3z Q33 A34 }
Q41 A4z Q43 Ayq
1 [l ae s anl] o |52 ] [0 o]
—| o a o a — 22 G231 1423 Qg
oY) | 21 22| | 22 23| Gy |a22 a23| |a23 a24|
431 @321 13z A33 a3z Q331 | a3z A3q
|a21 azz | @22 ays |a22 a3 | |a23 a24|
1 |las as a§§ azz || 1 |lasz asz| las; ass
37 |a31 a32| a3y O33 33 |a32 a33| |a33 a34|
Q41 Qa2 |a42 a43| Q42 Qg3 1 1 Q43 Qaq
Thus, we evaluate the next iteration scheme A, ; given by
q |a11 iz | |a12 a3 | | aiy Aq3 | | a3 Aq4 |
A Jlagy azal Tagy axs 1| 1 Jlaz, azsl laz; az,
azy |a21 Az | |a22 az3 | dy3 |a22 az3 | |a23 Q24 |
D az1 azp azp Azz azp Azz Q33 U3y
| a1 Az | | Qzz Q3 | | Ay A3 | | QA3 Qg |
1 |lasy aszz | las; ass || 1 |lasp azz | lass aszg
A3y | | A31 Q32| | A32 A33 Q3| | @32 A33 | | @33 A34
_ D(AM) __ |a41 a42| |a42 a43| |a42 a43| |a43 a44| J _
41 int(4,3) | Ay Q3 |
a3z azz
| 11 Q12 | | A1z Qg3 | | A1z Qg3 | | 13 Q14 |
i Qz1 Qpp | 1Ay Gp3 i Upz Qo3 | 1Az Ay
Ay | azq1 Az | | Qzp Q33 | ays | Qzp Q33 | | Qp3 Qp4 |
1 azq Az Gzz 33 Gzz 33 Q33 34 (1.4)
Qazp A3 Q1 dyp Ay Ay3 Qg A3 A3 Qo4 '
|a32 a3z | L | az1 a3z | | Az Q33 | L | A3z Q33 | | A3z Q34 |
A3z | aszy as; | | Az, Aaszj | as3 | azy Azj | | Q33 A3q |
Qg1 Qg 1 1 Qyp Q43 Qgp Q43 Qg3 Qg

14
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| azp A3 |
sy 4szz

a3
a3
Q33
az3
azz
Qg3

aqz
azz
a3z
azz
aszp
Ay

1
| Qgp A3 |
azp A3z

ay; Qi Qg3 1 A1z Q13 Q14
Ayy | B21 Q22 A3 (¢ —— a3 | G22 Q23 A4
a
(31 A3y Q33 23 U3y A3z (34 _
Q1 Qpz 433 1 Uz A3 U4
a3z | @31 A32 A33 [} —Ja,3 | A32 A33 O34
a
Qg1 Qg Qg3 33 (g Qg3 Oag
Q12 A3 Q14
Ay Az3 Qg a11 Q12 Q13 Q14
A3 A33 Q34 || _ Qa1 Qpp A3 Q4 _ |A
Qyp Q3 Aoy A3y Q3p A3z O34 41
a3z Q33 d3g Ay Agp Qg3 Agq
Ayp Qg3 gy

Thus, if we continue in this manner and supposed that this is true for n = r, then we shall have

that

1

ayr-1
A3r-1

azs3
azs

Ar-12 Qr-13 - Ap_1r-1

So that forn = r + 1, then one deduce that

2 1
r+1,1 — Ayy Qpgz -+ Az
Q3z Q33 -+ A3y
Arz Ap3 - ar,r

Q1 Q2 A1r-1 Qi Qg3 Qy,r
Az Az Azr-1 Azy 433 az,r
Ar_11 Qr—12 - Q-1 | |Ar-12 Ar—1,3 - Qr—1r
Qdzy Qg - Q1901 Ay dgz -~ Uy
Q31 Q3 - Az A3y Q33 -~ A3
Ara Qrz - Qproq Ar2 Qr3 - Ay
ayp Qg -+ Ay Qi Q13 =+ Q1741
Ay Az --- Ao Qz2 Q23 ---A2r41
Ar1 Ap2 -+ ar,,‘r Ar2 Qr3 -+ ar,r+1
Az Gz -+ Ayr Apz A3 A2r+1
A3y Qzp -+ Uypr a3z  d33 a3r+1
Ar Qrz - Qpp Ar+1,2 Ar+1,3 " Qriqre1

Thus, we conclude from the iteration scheme that the determinant of the matrix of order n is

1
Qz3
azs

n1 = Ay n—1

azn—1

Azz
azz

Ap-12 An-13 """ Qn-1,n-1

A1
azn-1

[&F)
Azz

11

az1

an—l,l an—1,2 anfl,nfl
Qy1 Az +++ Q1n—1

Q31 A3z - Azn-1

an,l an,Z an,n—l

[45F) a3 1,n
Qg2 azs Azn
an—1,2 an—1,3 an—l,n (1 5)
Qpz Q3 -+ Uz2n ‘
azz A3z ---A3p
an,Z an,3 an,n

REMARK 3.3 Observe that equation (1.3), (1.4) and (1.5) are the results obtained in (Farhadian,
2016, 2017), (Farhadian, 2017; Salihu, 2019) and (Salihu, 2012). We shall now proceed to obtain
the main results of (Salihu, 2012) for the case of matrices of order five (5) and order six (6) as a
special case (corollary) of theorem 3.2 of this research work using elementary row or column
operation coupled with the use of Duplex Fraction. In this research work we shall suppose that

15



International Journal of General Studies (1JGS), Vol. 5, No. 2 September 2025

D™(A,) is the mth times application of the Dodgson condensation (D) on 4, (n > m) and
D.,(A,) is the mth application of the Dodgson condensation on A,. That is D™(A4,) =
(D1D,Ds - Dy ) (Ay).

COROLLARY 3.4 Given A5 € M5(R) be a square matrix of order 5 with non-zero interior
entries, then for every j = 3,2, 1 the iteration scheme defined in theorem 3.2 yield the determinant
|Ag| as.

| a1y a12| |a12 a3 | |a12 a3 | | a3 anl | Az Q3 | |a13 a1y | | a3 a14| | a3 a14|
Apy App | 1Az Gy App Op3 | [ dy3 Apy Az Gp3 | 1 Gp3 Oy 3 Apq | [ Gp3 Gy
| ayy Az | | Azp Gp3 | | Ay U3 | | Q3 Apq | | Az az3| | A3 Ay | | Q3 Azq | | Q4 Qs |
a3y Az | Az, asz A3y d33 | [ d33 A3 Q3z Q33| 1033 34 gz Azq | 1 Qzq azs
| Ay1 Ay | | Azp Az3 | | Azp A3 | | Qz3 dz4 | | azz a23| | A3 Qpy | | Ap3 Qg | | A4 s |
azy Az | lag, asz A3y d33 | | d33 A3 A3z A3zl 1d33 Q34 Q33 Q3q | | d3q 35
| azy Az | | Az, azz | | dgzy d33 | | Q33 A3q | | a3z a33| | Q33 Q34 | | A3z A3q | | a3q Azs |
Ay Qo | [ Qg Q43 gy Q43| | Qg3 Qyg Qap Q3| 1G4z Qgg Qg3 Ayq Ay Qg
| Qyz Az |?' | Az3 Ay |2
ass A3y dsz Q33 O34
| Qa2 dy3 | | Q3 Qg | | Azq Ay | | Uz A3 | | Uy Qa3 | | Qz3 Qg4 | | Qzp 3 | | 3 Qg | | 3 Qg | | Ay das |
a3z Q33| | A3z Azq Qzy O3z | | A3z A3z A3z Azz | 1az3 A3y G3p Q33| | A3z A3y Q33 dzq | | A3q A3s
a3z “33| |“33 a34| Az a32| |a32 assl a3z assl |a33 “34| L57) a33| |a33 a34| Q33 a34| Q3q a35|
Az Qa3 | | Qa3 Qgq G4y Qaz | | Qaz Qaz Qap Aoz | | Aoz Qag Gyy Qa3 | | Qa3 ag a3 Qaa Agq Aas
| Az; a3z | | Q3 A3z | | A3z ds3 | | A3z 34 | | A3y Q33 | | Q33 A3 | | Q33 Az | | Ay d3s |
Ay Az | 1Az Qyg 4z daz | | daz Qag Ggz Q43| | Q43 Aag Q43 Qg gy Q45
| Ay Qg | | Ay Qg | | Qaz Qg3 | | Qg3 QAyq | | Qg Q43 | | Qg3 Qyq | | Qg3 Agq | | Ayq Qys |
Qsy U5y | | A5y dsy Usp sz | | As3 Asq G5y Qs3] | Q53 Asa Us3 Qsq | | A5y Ass
| A3y Us3 |2 | Q33 Qg |Z
Ay Q43 A3 Ay
Proof.
Since n = 5. Then
D(Asji1)
5J — - ] = 3,2,1 >
int(As,j+2)
D(D(A 2
p(4ss) DP(P(4s5)) Dp2(ass
53 = 7 = =
lnt(AS’S) lnt(As‘s) mt(A5‘5)
Thus
(/@11 Q12 dq3 Q14 Q15
t21 Az Up3 (34 G35
2
D Q31 A3y U33 O34 d3s
5 Qg1 Qygp Qg3 Qgq Qs
_ D (A5,5) . \ \l51 Q53 Q53 Q54 a55/ )
53 7 - -
’ mt(As 5) (/%11 Q12 Q13 Q14 Q15
,
Az1 Gz Az3 G4 Aps
int<| @31 @3z 433 A34043s
(g1 Q4 Qg3 Q44 Qa5

\\@51 Udsz QAs3 Us4 dss5/ )

r 7] 11 Q12 A1z Q13| 413 Q14 |a14 A1s5 |\ Y

az1 Qzz Qzz QAz3 11 Az3 Apg | 1034 Aps
Uz1 QA2 Uzz Q23| A23 Q24 |a24 Qs

D! Uzq Q33 U3z (33| [A33 A34

Uzq A3z (32 (33| |a33 A34 | Q34 U35

ds1 Qg2 gz Qa3 11 A43 Qg4 Q44 Qg5

gy Qg Uap Qg3 || g3 Agge |a44 Q4s

\\l a5y Qsp | | A5y As3 |53 Asg | [ A5y Qg5 1/ )

Qpz Ap3 A4

3z (33 U34

Ay Q43 Ayy

16
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| 11 Qg2 | | Q12 Q13 | | a1z Aq3 | | a13 14 | | 13 A14 | | a13 Q14 |
1 a1 Qzz Qzz A3 1 QAzz Az3 Qz3 A4 1 Q3 Az4 Qaz3 QAz4
gz |a21 a22| |a22 azs | g |a22 ass | |a23 a24| (a4 |a23 a24| |a24 a25|
(31 Azz | 1d3p a3z U3y azz | [dgz3 A3zg Q33 Uzq | [d34 A35
| a1 Az2 | | Upp 423 | | Q2 A3 | | a3 U4 | | Az3 A4 | | Q4 A5 |
1 a3y Azz | 1az; ass 1 a3z Q33| | A33 (34 1 Q33 A3 | [ d34 A3s
a3y |a31 a32| |a32 a33| ass |a32 a33| |a33 a34| ass |a33 a34| | 34 a35|
Qg1 Qg2 1 1 Qg2 Q43 Qa2 a3 | [Ag3 Aaq Q43 Qag Q4 Qa5
| azq A3z | | U3y A3z | | U3y A33 | | a3z Q34 | | Q33 Q34 | | U3y U35 |
1 Qg1 Qg2 | 1 Qg3 Q43 1 Qg2 Qa3 Q43 Agq 1 Qg3 Qag Qg4 Qgs
gy |a41 a42| |a42 Q43 | (s |a42 Q43 | |a43 a44| (ys |a43 a44| |a44 a45|
as1 Gsz2 | 1asz as3 Qsz Q531 | 53 Asy Qs3 Qs | 1 dsy Ass
Thus, we evaluate the next iteration scheme As , given by
A D(4s5)
52— . -
int(As4)
| ayp A2 | | A1z A3 | | A1z 3 | | 13 Aqg | | A3 Q1g | | Q13 Q14 |
1 Az1 Az | | Q22 A3 1 Az Qp3 | | A3 Qgy 1 Q23 Qg | 1 Ay3 d2q
Qs | dzp Az | | Q22 A3 | ay3 | Az dz3 | | a23 daq | [N | az3 Qg | | Apq dzs |
dzq Az | | A3y A3z A3z A3z | | A3z d3q a33 Gzq | | dzq 35
| ayq Qa2 | | Ay A3 | | Aoz Qg3 | | QA3 Ayg | | Qy3z Q24 | | Qyq Qs |
D 1 |lazy azp |l laz; azz || 1 Jlas; az; | 1asz; as 1 |lasz az | | asy ass
(4293 |031 a32| |a32 a33| Q33 |a32 a33| |a33 azq | Q34 |a33 a34| | azq a35|
Agq Qa2 | | Qa2 Qg3 Aap Q431 | Q43 Qg4 Qg3 Qgq Q44 Qys5
| azq dzp | | a3z A3z | | Qzp Azz | | A33 A3q | | dzz azg | | Q34 Q3s |
1 |lag agzl lagz asz || 1 |lase asl 1ass as 1 |l ass agl | agy Qus
Ay | g1 Aaz | | A4z Qa3 | Gy | Aaz A43 | | @43 Agg | Ay | Q43 Aag | | Qg4 g5 |
Qsy dsp | | dsp As3 Qsp Qs | | As3 Osy Q53 U5y Q54 Ass _
| aq | | A1z dg3 | | diz A4 | | Ay Q15 |
az1 Ay Qa3 11 Az3 Azq | 1Az Ags
| dzq Qg2 | | Az Q3 | | A3 Q24 | | A4 Qzs |
int Azq A3z | | Q3p A3z 110a33 Azq 11 A3 A3s
|a31 a3z | |a32 ass | | as3 a34| | a34 a35|
Agq Qaz | | Qap Qa3 11 Ag3 A4a ] ] Qag Ay
| Qa1 Qa2 | | Qa2 Qa3 | | as3 Aag | | QAgq Qa5 |
Qsy Qsz | | A5y A5z || A5z Asy | | sy sy
’au a2 | |ﬂ12 g3 ’ ’alz a3 | |ﬂ13 Ay4 ’ ’ Az a3 ’ ’ a3 A14 ’ ’013 ﬂ14| |a13 a4
1 |laz1 a2l L@z @231 | 1 |l @z azsl lazs aze 1 |lag g3l lazs aze 1| 1 |13 azal lazs aza
ayy ’a21 ﬂzzl |ﬂzz 6123’ y3 ’azz a23| |ﬂ23 024’ sy ’ﬂzz ﬂ23’ ’aza 024’ (<29 ’a23 a24| |a24 azs
azp dzz | 1 d3zz dszs Az dgz | ldzz dzq a3y dzz | | a3z d3s dzz dzq | 1 dazs ass
"121 a2 | |a22 daz3 ’ ’azz a3 | |az3 ‘124’ ’ Ayp dz3 ’ ’ﬂzs a4 ’ |a23 Qa4 ’ |az4 azs
1 |last asx | lag; ass || 1 |las assl lags ass 1 |las2 ass | lass asal| 1 |lass ass ass
as, ’031 ﬂ32| |a32 ‘133’ as3 "132 ﬂ33| |a33 034’ ass ’a32 ‘133’ ’ﬂ33 034’ (<2 |a33 034’ ’ Q34 d3s
Qg1 Qa2 | | Qg Qa3 QAqp g3 | 143 Qe Q4 Qg3 | | Qa3 Aqq 43 Qqq Qg4 Q45
’am azp ’ ’ﬂzz a3 ’ |a22 dy3 ’ ’ Qp3 dag ’ ’ Qo2 da3 ’ |az3 ﬂ24| ’ Qa3 Q24 ’ ’ﬂ24 a5
1 |lasq asp | las; ass || 1 |las; ass| lass ass 1 |lasz ass| lass ass || 1 |lass assl las, ass
asy ’331 ‘132’ ’ﬂ32 assz ’ as3 |a32 033’ ’ﬂ33 034’ as3 ’ﬂ32 333’ |as3 ﬂ34| [ ’ﬂ33 334’ ’ aszy Azs
Q41 Q42 | | Agp Q43 Q4 Qg3 | | Qg3 Qg Qg2 Q43 | | Q43 dgq Qg3 Qg4 Q44 Q45
’331 azp ’ ’ﬂ32 azz ’ |a32 dzz ’ ’ Q33 Q34 ’ ’ Q3p d33 ’ |a33 a34| ’ Q33 Q34 ’ ’ Aazq dzs
1 |las ag | lasy ass || 1 |lagy assl |ass as 1 |las ass| lass ase || 1 |l as3 agsl | asy us
Agp ’ﬂ‘-41 a42’ "142 a43 ’ Q43 |0‘-42 a43’ ’%3 a44’ a4z "142 ﬂ‘-43’ |a43 a44| Qyq ’%3 ﬂ‘-44’ ’ﬂﬂ a4s
Qsy Qs | | A5z As3 Qs Qs3 | | ds3 sy Qsy Qs3 | | ds3 Osg Qs3 Qsq4 | | dsq Qss
|a22 az3 ’ ’ a3 Qg ’
asp Asz | | A3z d3q
|a32 asz ’ ’ azz azq ’
Qg Qg3 | | Qg3 Qgq
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aqy Q12| | @12 413 Ay Q3| | d13 A4 Ay Qg3 | | 3 g ag3 Q14| | 13 A4
1 ’ﬂ21 Qa2 | |ﬂ22 a3 ’ 1 ’azz azs | |ﬂz3 ﬂza,’ 1 ’ ayy dy3 ’ ’ﬂzs agq ’ 1 ’%3 azocl |ﬂz3 ﬂzo,’
(<% ’ﬂzl gz I Iﬂzz az3 ’ y3 "122 az3 I |ﬂ23 ﬂzd,’ dpy ’ Ay Ay3 ’ ’ﬂzz a4 ’ (<2 ’a23 a24| |ﬂ24 dzs ’
dzy A3z | | azp dsg asp dssz | | dsz dszq azp dzz | | d3z d3a A3z A4 | | d3g Ass
’a21 a2 | |ﬂ22 dz3 ’ ’azz a3 | |ﬂ23 au’ ’ Ay A3 ’ ’ﬂzs A4 ’ |az3 Az4 ’ |‘124 azs ’
1 |las: asz | lasp; assl| 1 [las; assl |ass asq 1 [lasz assl lass asql| 1 |lass asql| lasq ass
asy ’a31 ﬂ32| |ﬂ32 6133’ asz ’032 ﬂ33| |a33 a34’ asz ’ﬂ32 ﬂ33’ ’“33 034’ azq |a33 ﬂ34’ ’ d34 035’
Q41 Qg2 | | Q4p Qu3 Qg Qg3 | | Q43 Q44 Q4p 43| | Ag3 A4s 43 Q44 A4 A45
dyp da3 Ay3 Az
|a32 aszs ’ |a33 034’
’azl az; ’ ’“22 azs ’ |a22 azs ’ ’ az3 A4 ’ ’ Qzp 23 ’ |az3 aml ’ Az3 Ap4 ’ ’am azs ’
1 |lasy azz | lag; ass || 1 [lasz azzl | ags as, 1 |lasz azs | lass ase || 1 [lass azel lage ass
asy || @31 Q32| | A32 A33 assz || @32 dsz3 Q33 A3q as3 || 932 @33 | | 933 A34 | | a4 || 933 A34 Qzq d3s
’aa,l a4z ’ ’042 aq3 ’ |a42 a43 ’ ’ A4z A4q ’ ’ Qgp (43 ’ |a43 ﬂ%l ’ Ag43 Q44 ’ ’ 44 Qa5 ’
’a31 asy ’ ’032 ass ’ |a32 ass ’ ’ d3z A3q ’ ’ dzy asz ’ |as3 ﬂ34| ’ A3z Q34 ’ ’ azq A3s ’
1 |lasy Qupl 1 Agp aga || 1 [layp Qugl |Gy Ay 1 |las agzl lasg agel| 1 [layz Qaql | Quq Gys
Agy || Qa1 Qa2 | | Qa2 Q43 Q3 || @42 Qa3 Qg3 Qqq ay3 ’%z Q43 ’ |%3 ﬂ%l gy ’%3 %4’ ’a% Q45 ’
’a51 dsy ’ ’ﬂsz as3 ’ |ﬂ‘-52 as3 ’ ’asz a54’ Qs As3 | | As3 sy Qs3 ds4 | | ds4 Ass
’ azp a3z ’ ’ a3z d3g ’
Qg2 Q43 Q43 Aag
Ian diz ’ ’012 a3 I ’ Qiz di3 I ’013 a1+| |a12 a3 ’ ’ Qy3 d14 I ’013 Aaq4 I "113 “‘-14’
dyq dpp | 1Ay dp3 Ay dpz | 1 dyz dpg App Gpz | | dpz dyg Qyz Qyq | | Az Ay
|az1 ayz ’ ’azz az3 | ’ Ay dz3 | ’azs azafl |a22 dz3 ’ ’ dz3 azafl ’023 a4 | ’azaf 25 ’
azy dzz | 1asz aszz A3z azz | | asz azq Qzp Qg3 | | dzz d3g Q33 A3 | | A34 A3s
Iazl ay; ’ ’azz azs I ’ dpp dp3 I ’023 azdcl Iazz a3 ’ ’ a3 a2+| |a23 Azq ’ ’ﬂzaf azs ’
dzq dzp | |d3p dzz Azp dzz | | dzz dzq Azp A3z | | dgz d3q A3z dzq | | Agzq A35
|a31 asz ’ ’asz asz | ’ Az dzz | ’033 asafl |a32 dszz ’ ’ dszz asafl |a33 azq ’ | A34 A3s ’
41 Qg | | Qqp Q43 Q4p Q43 A43 Qg4 Qg Q43 43 44 Q43 Q44 Q44 Q45
| Qzp Gz3 ’2 ’ dp3 A4 |2
a3y d33 A3z d3q
I a1 Qpp ’ |f122 dzs ’ |‘122 dz3 ’ |f123 dzq | ’ Qapp A3 ’ | QAp3 Qg ’ ’ Qa3 Qa4 ’ |az4 ays |
azp A3z | 1dzp dzz A3z dzz | | d3z d3q dagp dzz | | dzz d3q azz dzq | | d3q A3s
| azy Az ’ |a32 aszsz ’ |a32 dzz ’ |a33 az4 | ’ asz azg ’ | azz Azq ’ ’ azz Azq ’ | azs Azs ’
Qg1 Qqp | | Qg A3 Ay Qa3 | | G4z A4g QAgp Q43 | | Q43 Ayq 43 Q4q Qg Q45
| aszy a3p ’ |f132 aszs ’ |a32 dsz ’ |f133 aszq | ’ azy dsz ’ | a3z Q34 ’ ’ azz Q34 ’ | azq d3s ’
aq1 Qg2 | 1 Qg Qa3 Q42 Aq3 | 1 dgg dgq Agp Aq3 | | Q43 Aqq g3 Aqq g4 Q45
| a4y Q42 ’ |a+2 Q43 ’ |a42 43 ’ |a+3 gy | ’ Agp Q43 ’ I Q43 Q4q ’ ’ A4z A4q ’ |a44 45 |
Q51 Qsy | 1 A5 ds3 Qsp ds3 | | ds3 dsy sy As3 | | @53 A5y Q53 Qsq | | dsq dss
’ asz azg ’Z "1‘-33 A3q ’2
Qg Q43 Q43 Q4q
Now,
_ D(4s2)
51 — -
int(Asp3)
’ ay1 A1z | |a12 aq3 ’ "1‘-12 aq3 ’ |a13 A14 ’ ’ a1z di3 | | a13 Q14 ’ |a13 a1q ’ |a13 A1q ’
Q1 Aoz | 1Azp dp3 Az Ap3 | | A3 A3q Ay Az3 | 1 dz3 dpq Q3 A4 | | A3 A3q
’ Qa1 dzz | |ﬂ22 daz3 ’ ’ Az A3 ’ | g3 dzq ’ ’ gz dz3 | | dzz A4 ’ |a23 aza ’ |az4 azs ’
azi Azy | lazy ass Q3 A3z | | A3z d34 A3z Azz | I azz azq Q33 Q34 | 1d3q d3s
’ Ay Ay | |a22 ay3 ’ ’azz ay3 ’ |az3 Apq ’ ’ Ayy A3 | | Apz A4 ’ |az3 aq ’ |az4 ays ’
31 azp | 1azy dzz Q3 Azz | | A3z d34 A3z azz | lazz azq Qzz dzq | |d34 d3s
’ aszy azp I |ﬂ32 assz ’ ’a32 ass ’ |a33 Azq ’ ’ azp azz I I A3z A3q ’ |a33 asq ’ ’ azq Azs ’
Qg1 Q43 | 1Aqy Q43 A4z Q43 | | 43 dag QAgp Qg3 | | Qag Qg Q43 dgs Qyq dy45
’ Ay A3 |2 ’ QA3 Apq |2
D 3z dazz 33 dzq
’ Ay Ay I I Ay A3 ’ Iﬂzz dz3 ’ ’fl23 257 I Iazz Az ’ ’ ay3 ﬂz4| I dpz A4 ’ ’flu azs I
azq dazy | 1 dzy dzz azy azz | | dzz d3q agz dzz | | dzz d3q A3z Azq dzq Azs
’ azp azp I I A3z Q33 ’ I“sz az3 ’ ’a33 Q34 I Iasz a3z ’ ’ Q33 “34| I A3z Q34 ’ ’ Q34 d3s ’
Qg1 Aqp | 1 Aqp Qg3 gy Qg3 | | Qg3 Qaq QAqp Qg3 | | Qg3 Agq A4z Agq QAqq Qa5
’ azp azp | | A3z Q33 ’ |“32 az3 ’ ’a33 Q34 | |‘132 a3z ’ ’ Q33 “34| | A3z Q34 ’ ’ Q34 d3s ’
Qg1 Agp | 1 Ag4p Ag3 QAyp Qa3 | | Q43 Q44 Aqy Qg3 | | Q43 Aag A4z Qg4 Qg4 Q45
’ g1 Aqp | | A4y Q43 ’ |ﬂ42 43 ’ ’ 43 Q4q | | A4y Q43 ’ ’ Q43 A4q | | Q43 Q44 ’ ’ A4q Qg5 |
Qsy dsp | | dspy dss Qsp dsz | 1 ds3 Asq Qsp Qs3 | | Q53 dsg Q53 Q54| | A5 Ass
’ a3 dzz |2 |a33 34 |2
A4y Q43 43 Aqq
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ann a12| |a12 a13 a1 a13‘ |a13 Q14 a3 a14‘ ‘a13 a14‘
1 [laz ax| Az Gz l| 1 |12 3| [aG23 Q4| _1 [|Q23 G241 [A23 A4
Az || a2 fl22| |a22 3| Q23| | Q22 a23‘ |a23 a24‘ Uoq|| Q23 a24‘ ‘024 azs
a3; dzz | |43z A3z Q32 U3z | | A3z d34 Q33 Q34| [A34 Q35
az a22| |a22 az3 a2z azs‘ |a23 a4 Qa3 Qg ‘024 azs
ingl| |1 @31 G321 [ @33 Azz || 1 |3 331 [G33 Az4l| 1 |1a33 Azsl [d34 A3
azz || Az a32| |a3z a33‘ asz||asz a33‘ |a33 a34‘ A34|| 433 a34| | Q34 Q35
g1 Qg2 | | Qg7 Ay3 Qg2 Ag3 | | g3 Qyq 43 Qaq] | Agq G45
azy a32| |a32 a3z a3z a33‘ |a33 a34 az3 a34| | a34 U3s
1 [lA4q Agp| Qg Quzl| 1 |1 Qa2 Qs3] [ Q43 Qaq || 1 || Q43 Qag| | Qgg Qs
Q42| | Qa1 a42| |a4z a43‘ 3| | Qa2 a43‘ |a43 a44‘ Qgq|| Qg3 Cag ‘044 Qg5
As1 G5z | | sz Gs3 Usz As3 | | G5z Osg As3 Gsg | | Gsg Ass
’ Ay A | ’ﬂlz ai3 ’ ’ aqy a3 | |a13 Aar4 ’ ’ Qg 13 ’ ’ a3 dyg | ’013 a4 | |5113 a4 ’
Azq Az | | dpp o3 Ay A3 | 1 dz3 dpg Qdz da3 | | dz3 dpq dz3 4 | 1 Ap3 Apy
’a21 azz | "122 azs ’ ’ Ay a3 | |a23 A4 ’ ’azz az3 ’ ’ azs a24| ’a23 A4 | |a24 azs ’
azy dzy | | asp dss azy Az | | azz dsg Qazp A3z | | ds3z dzg azz A3q4 | | A3 Azs
’ﬂ21 azz | ’azz az3 ’ ’ azy A23 | |a23 azq ’ ’azz az3 ’ ’ azz ﬂz4| |a23 aza ’ |a24 aszs ’
azy Azz | 1Az dzs A3y gz | 1 d33 dzq 3z O3z | | d3z d3q A3z Q34 | |34 A3s
’a31 aszl ’ﬂ32 asz ’ ’azz az3 | |a33 a34’ ’asz asz ’ "133 a34| |a33 ‘134’ ’ 34 A3s |
Q41 G4z 1 1 Q43 Qa3 A4y A3 | 143 Agq Qap Qg3 | | Qg3 Ggq Q43 Qag A4q A5
’ az; dp3 ’2 ’ Ay3 g4 ’2
a3z A3z a3z d3q
’ dz1 A2 ’ |a22 dz3 ’ |azz dz3 ’ ’az3 az4| ’ Qpp Ap3 | ’ A3 Qog ’ ’ daz3 a24| ’au dzs |
a3y gz | 1dzz dzz dgp A3z | a3z d3q A3z Az | | d3z d3s Q33 dzq | 1d34 A3s
a3y a3z | | 432 d33 azp A3z | | A33 d34 ’ﬂsz ﬂ33| ’333 334’ ’ﬂ33 as4| ’ azy a35’
’341 A4p ’ |ﬂ4z ay3 ’ |a42 sz ’ ’043 a44| Qg2 Qg3 | | Q43 Qs4g Q43 g4 Qg4 Ass
’ azy a3z ’ |a32 asz ’ |a32 ass ’ ’a33 a34| ’ asy dasz | ’ azz azs ’ ’ asz as4| ’ azy Ass ’
A4 Qap | 1 dgy Ay3 Az Qaz | | Q43 Agq Ay Qa3 | | Q43 Qg A4z Oy Qg4 Qa5
Q41 Q42 | | A4z 43 Qgp Qa3 | | Q43 QA4a Qg Qg3 | | Q43 Qas Q43 Cgq | | A4q Q45
’ sy ds3 ’ |ﬂ52 ds3 ’ |a52 dss ’ ’a53 a54| ’ dsz ds3 | ’ ds3 dsq ’ ’ as3 a54| ’6154 Qss |
a3 asz |’ |a33 sy ’2
|ﬂ42 Qa3 ’ Q43 Qgq
‘ Az Az3 ‘ ‘ az3 Qg ‘
1 [laszz azz| | asz aza
asz3 ‘a32 a33‘ ‘a33 a34
Q42 A43 | | Q43 Agq

THEOREM 3.5 Given 4,, € M,,(R) be a square matrix of order n with non-zero interior entries
and D™(A,,) is the mth times application of the Dodgson condensation on A,, then for every j =
n—2,n—3,n—4,--,2,1 the iteration scheme defined in theorem 3.2 yield the determinant |A4,|

as A, 1 given by.

Apg =

D, (D1(Ann))
\int(Ann)

int (D(Ann))

int (D2(An))

int (?3 (An‘n))

2

Where D™ (4,) = (D;D,D5 -+~ D) (A,)

Proof:

Using the iteration scheme defined in theorem 3.2, it follows that for the case n — 2 the result is

trivial, otherwise

An}' ="
lnt(AnJ+2

D(Any+1)

'

n=3vj=n—-2,n-3,n—4,---

int (Dn-3(ﬁn,n))

19
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So that
b Di(Ann-1) _ D2 (Dl(An,n)) _ D?(Any)
M int(Apy) int(Ann)  int(Ann)
D3(D1(4nn))
A DslAuna) _ Ds(Anns) _ 1 (Dz(ol(An,n))) _ DR(W)
=3 T (A ) int(D(Ann))  int(D(4nn)) 3\ ine(4,) int(D(Ann))
o (P (D1(4n))
T\ int(Ann)
Dy
int (D(Ann))
A _ D4-(An,n—3) _ D4(An,n—3) _ D4-(An,n—3) _
M int(Apnea) int (D(Ann-1))  int (D?(Ann)) int (D2(Ayn))
Y CACICS)
' int(4Ann)
D,
 Ds int (D(4yn))
Dl ~
int (D*(Ann))
int (D3(An,n))
A =M= .= :
M it (An pekez) int (D¥-2(4,,,))

Thus, for k = n — 1, we will have

Dz (D1(Ann)

os| | e (0(4,))

int (D?(An))
int (93(/4,1_,1))

int (D"—3(.Anln))

This completes the Prove. We noticed that theorem 3.5 representation look rather
subtle and complex for application purposes, hence we give an equivalent
representation of the result in theorem 3.5 which could be written in some worth
friendlier manner, we do that in the corollary that follow.

COROLLARY 3.6 Given the result of theorem 3.5 then for every n > 2 its
equivalent representation is given by

20
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Dy(Ls4)

317 int(Ann) Lyp = %
Ly, = M D3(L:’11)
"~ int (D(Ann)) Lys= m
L OV  Dy(Lay)
J int (DZ(An,n)) = Lsa= int(Lil)
Loy = Ds(Ls ) Ly, = Ds(Ls,)
int (D3(4yn)) it (L)

_ Dn—l(Ln—l,l) —4,, a1 = % = A,

int (D”‘3(Anln)) ’ n-21

where L1 = Apn L1 = Dl(An,n) = D(An,n)' Ly21= Dn_S(An,n)-

We now proceed to apply the result of this corollary 3.6 to specific problems of determinant

4. APPLICATION

Example 3.7 Determine the determinant of the following matrices;

53 9 v 2 10
1)(2411) Dl g 5 15
168 -3 3 1 2

Solution

Using the formula in corollary 3.6, it follows that for n = 3 we have

st el L)
i)

D {( 184 __334 )} 476 +24

L3,1 = Az =

7 = 7 =-113
Next, for n = 4 we have
De(0ildnn)) Dyt
T mt(Ann) Y e (D(4nn)) 4'1

So that

21
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1 -2 31
4 2 10
D,| Dy
EACCR) Y1)l
T int(Apn) 1 -2 3 1
. 4 2 -10
Ml o 2 g 5)
-3 3 1 2
. ||31
3l g5 |2_1|| Klo_“)] (Ilo 4||45)
0 2 1 pil 8 4 -5 4 —5
|—33 |31| |1z _ 6 —1-3/) _ |6—1 |
2 -1 2 -1 2 -1
(2 1) (2 1) (2 1)
|10 NN s
8 4 4 —5 z(_3166 js)
6 —
2 1
Then,
R YO0 B0 . G rget) |
R int (D(4nn))  int(D(4yn)) }};2 _313
int| D 0o 2 15
33 12
=D {(—3166 jg } 3166 j? _I8%8_ ..
4

10-4 1
int[(B 4 —5)]
6 —1-3

5. CONCLUSION

The result of our theorem is not restricted to any particular order of matrix,
hence it is applicable to any arbitrary square matrix of order n. Hence the
results of our research work generalize some related works in the literature,
in particular that of (Farhadian, 2016, 2017; Salihu, 2012, 2019).
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