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Abstract

This paper investigates the boundedness conditions and solution size constraints in
rational linear programming (LP) and polyhedral optimization. We establish
necessary and sufficient conditions under which the optimization of linear functions
over rational polyhedral remains bounded and derive explicit bounds on the
numerical size of optimal solutions, when they exist. Central to our analysis is the
equivalence of boundedness between a rational polyhedron and its integer hull,
providing new insights into the structure of feasible regions. We also present size
bounds for solutions in terms of the bit-length of rational data, demonstrating how
these results impact the complexity and numerical stability of LP solvers. The
theoretical framework builds upon polyhedral geometry, sub-determinants, and the
properties of rational systems, and is supported by rigorous proofs. Applications are
explored in mixed-integer programming, convex hull computation, and production
scheduling, where our results enhance both theoretical understanding and
computational efficiency. These findings contribute to the deeper interplay between
discrete and continuous optimization, offering valuable implications for algorithm
design and numerical analysis.

Keywords: rational linear programming, polyhedral optimization, boundedness
conditions, integer hull, solution size bounds, rational coefficients, computational
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I. Introduction

Linear programming (LP) has long played a foundational role in optimization
theory and computational mathematics. Its origins can be traced to the 1930s,
notably through the pioneering work of Leonid Kantorovich, who formulated
optimization models to address resource allocation problems in economic
planning (Kantorovich, 1939). His contributions laid the groundwork for
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linear optimization and were later recognized with the Nobel Prize in
Economics.

The practical relevance of LP accelerated during and after World War I,
when George Dantzig introduced the simplex method for optimizing military
logistics and operations (Dantzig, 1947). Despite its potential for exponential
time complexity in the worst case, the simplex algorithm has remained a
practical cornerstone in solving LP problems due to its efficiency and
implementability.

The development of rational linear programming—where constraints and
objectives involve rational coefficients—has gained prominence with
advances in algorithmic design and numerical analysis. In particular,
Karmarkar’s introduction of the interior-point method in the 1980s provided a
polynomial-time alternative to the simplex method, bringing further attention
to the role of numerical stability and solution size in optimization
(Karmarkar, 1984).

Parallel to these developments, polyhedral optimization has emerged as a
central topic at the intersection of combinatorics, geometry, and operations
research. Polyhedral, defined as intersections of finitely many half-spaces,
represent feasible regions of LP problems and possess rich structural
properties. Among these, the integer hull—the convex hull of all integer
points within a polyhedron—has become fundamental in understanding and
solving integer and mixed-integer programming problems (Nemhauser and
Wolsey, 1999).

Recent advances in polyhedral theory—including the study of rational
polyhedral and their applications in computational geometry and
combinatorial optimization—continue to enrich our understanding of both
structural and algorithmic aspects (Laisin et al., 2024). In a related
contribution, Laisin and Adigwe (2025b), in their paper titled
"Implementation and Comparative Analysis of the AMGT Method in Maple
24: Convergence Performance in Optimization Problems”, examined the
convergence behavior of the AMGT method. Their results demonstrated that
the feasible solutions generated by the method remain bounded.

This paper focuses on two key aspects of rational linear and polyhedral
optimization:

» Characterizing conditions under which the optimization of a linear
function over a rational polyhedron is bounded;

» Establishing explicit bounds on the size of optimal solutions in terms
of input data.
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These contributions build upon classical results in LP and integer
programming (e.g., Schrijver, 1998) and offer refined insights with significant
implications for computational efficiency, solution representation, and
numerical stability.

I1. Preliminaries and Definitions
Definition 2.1: Sub-determinant

Let A be an integral matrix. A sub-determinant of A is |B| for some square
sub-matrix B of A (defined by arbitrary row and column indices). We
writeZ(A) for the maximum absolute value of the sub-determinants of A.

Definition 2.2: Polyhedron

Linear Programming deals with optimizing a linear objective function of
finitely many variables subject to finitely many linear inequalities. So the set
of feasible solutions is the intersection of finitely many half spaces. Such a set
is called a polyhedron.

Definition 2.3: Polyhedron in R"

It is a set of type
P = {x € R™: Ax < b}

for some matrix A € R™ ™and some vector b € R™. If A and b are rational,
then P is a rational polyhedron. A bounded polyhedron is also called a

polytope.

We denote the rank of a matrix A by rank(A). The dimension dim X of a
nonempty set:

xCR"
is defined to be n — maxrank(A)
{rank(A): A is an n X n — matrix with Ax = Ay forall x,y € X}
A polyhedron P € R™ is called full-dimensional if dim P = n

Equivalently, a polyhedron is full-dimensional if and only if there exist a
point x* in its interior. (Genova and Guliashki, 2011).

Proposition 2.1: Nonempty polyhedron: Let
P ={x:Ax < b}

be a nonempty polyhedron. If ¢ is a nonzero vector for which
6 := max{cx : x € P}
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is finite, then {cx : x = &} is called a supporting hyperplane of P. A face of P
is P itself or the intersection of P with a supporting hyperplane of P. A point x
for which { x} is a face is called a vertex of P, and also a basic solution of the
system Ax < b(Genova and Guliashki, 2011).

Proposition 2.2: Let
P:={x:Ax < b}

be a polyhedron and F < P. Then the following statements are equivalent:

() Fis aface of P.

(b) There exists a vector ¢ such that 6 := max{cx : x € P} is finite and
F={cx=8:x€P}

(c) F:={x€eP:A'x=b"} # @; for some subsystem A'x < b’ of Ax<b
(Genova and Guliashki, 2011).

Corollary 2.1: Let P be a polyhedron and F a face of P. Then F is again a
polyhedron. Furthermore, a set F' € F is a face of P if and only if it is a
face of F(Genova and Guliashki, 2011).

Proposition 2.3: Let P = {x: Ax < b} be a polyhedron. A nonempty subset
F < P is a minimal face of P if and only if it is a face of;

F={x:A'x=Db"}
for some subsystem A'x < b’ of Ax < b(Akif and Cihan, 2008)

Proposition 2.4: For any rational square matrix A we have
size detA < 2size(A)

Proposition 2.5: If x,y € Q" are rational vectors, then
size(x +y) < 2(size(x) + size(y))
size(xTy) < 2(size(x) + size(y))(Laisin et al.,2024).
Definition 2.4: Integer programming problem (IPP)

The IPP is a special class of linear programming problem (LPP) where all or
some of the variables in the optimal solution are restricted to assume non-
negative-integer values. Thus the general IPP can be stated as follows.

Optimize the linear function

Optimize Z = ) c;x; . (1)

n

i=1
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Subject to the constraints.

n
Z ai]’xi < bir j =12,...m (2)
i=1

x; = 0 and some x; are integers.

There are two types of the Integer Programming Problems (Elmuti, 2003;
Genova and Guliashki, 2011).

Definition 2.5: All integer programming problem

An IPP. is termed as all IPP or pure IPP if all the variables in the optimal
solution are restricted to assume non-negative integer values.

Definition 2.6: Mixed integer programming problem (MIPP)

An IPP is termed as mixed MIPP if only some variables in the optimal
solution are restricted to assume non-negative integer values while the
remaining variables are free to take any non-negative values (Gupta et al.,
2014).

Importance of IPP

Quite often, in business and industry we require the discrete nature or values
of the variables involved in many decision-making situations. For example, in
a factory manufacturing trucks or cars etc. the quantity or number
manufactured can be a whole discrete number only as a fraction of truck or
car is not required. In assignment problems and travelling salesman problems
etc. the variables involved can assume integer values only. In allocation of
goods, a shipment must involve a discrete number of trucks etc. in sequencing
and routing decisions we require the discrete values of variables. Thus, we
come across many integer programming problems and hence need some
systematic procedure for obtaining the exact optimal integer solution to such
problems (Elmuti, 2003; Genova and Guliashki, 2011).

I11. Main Results
Lemma: (Boundedness equivalence)

Let P = {x: Ax < b} be some rational polyhedron whose integer hull is
nonempty, and let ¢ be some vector (not necessarily rational). Then
max{cx: x € P}

is bounded if and only if max{cx: x € P{}is bounded.

Proof:
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Suppose max{cx: x € P}is unbounded. Then Corollary 3.2.8 says that the
system

yA=cy=0

has no solution. By Corollary 3.26 there is a vector z. With ez < 0 and Az >
0. Then the

LP min{cz: Az > 0,—|< z <|}
is feasible. Let z* be an optimum basic solution of this LP. z* is rational as it
is a vertex of a rational polytope. Multiply z* by a suitable natural number to
obtain an integral vector w with Aw > 0 and cw < 0. Let v € P4 be some
integer vector. Then v — kw € P4 for all k € N, and thus max{cx: x € P}
is unbounded. The other direction is trivial.

Theorem (Rational matrices and vertices of polytopes)
Consider the rational linear programming (LP) problem:
LP: max{c"x: Ax < b}

where A and b are rational. Suppose this LP has an optimum solution. Then
the following hold:

(i) Bounded Size Solution: There exists an optimum solution x such that:
size(x) < 4n(size(A) + size(b))

(if) Special Case (Unit Vector b): If b = e; or b = —e; for some unit vector
e; there exists a nonsingular submatrix A’ of A and an optimum solution x
such that:

size(x) < 4n(size(A) + size(b))
with each component of x satisfying:
size(component of x) < 4(size(A) + size(b))

(iii) Reduced Submatrix Case: If b = e; or b = —e; for some unit vector e;
, then there exists a non-singular submatrix A" of A and an optimum
solution x such that:

size(x) < 4n - size(A")
Proof
The proof of Theorem 4.3 relies on these definitions 2.1, 2.2, 2.3, 2.4 and 2.5

respectively, to analyse the structure and properties of the LP problem.
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Task 1. to show that, for a given LP, there exist a Solution with Bounded
Size

By the fundamental theorem of linear programming, there exists an optimum
solution x* at a vertex of the feasible polytope {x: Ax < b}.

o Vertex Characterization:
A vertex x* corresponds to a subset of constraints in Ax < b that are
active (i.e., satisfied as equalities). By Corollary 2.1. the maximum is
attained in a face F of
{x: Ax < b}.

Let I < {1,2,...,m} denote the indices of active constraints, and let A,
denote the submatrix of A corresponding to these constraints. At a vertex, the
system can be written as:

AIx = bI
where byis the corresponding sub vector of b.

o Non-Singularity of A4;:
For x* to be a vertex, the matrix A; must be non-singular (invertible),
and | I |=n.

o Size of Solution:
Solving A;x = by
X = AI_lbI

Using bounds on the size of A; and by, and the fact that A, is rational, the
entries of are bounded in terms of size(A4;). Specifically, the size of x is
bounded by:

size(x) < 4n(size(A) + size(b)).
Task 2: to show that for a give LP has a Special Case (b = e; or b = —e;)

If b =e; or b = —e;, Wheree; is a unit vector, the LP corresponds to finding
the maximum value of ¢"x along a specific axis defined by e;.

o Existence of a Non-singular Submatrix:
As in task 1, there exists a vertex solution x*, and the active constraints
correspond to a nonsingular submatrix A’ of A.

o Bound on Solution Size:
Similar to the general case, the size of x is bounded by:
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size(x) < 4n(size(A) + size(b)),
with the size of each component of x further bounded by:
size(component of x) < 4(size(A) + size(b)).

Task 3: to show that for a give LP has reduced submatrix: Let F' € F be a
minimal face. By corollary 2.1F = {x:A'x = b’} for some subsystem
A'x < b of Ax < b.

Then, in the special case where b =e; or b= —e;, let A" denote the
nonsingular submatrix corresponding to the active constraints at the optimum.

Now, we may assume that the rows of A’ are linearly independent. We then
take a maximal set of linear independent columns (call this matrix A”) and set
all other components to zero. Then
x= (A")1b,
filled up with zeros, is an optimum solution to our LP. By Cramer’s rule the
entries of x are given by
detA'’

*i= deta”
where A" arises from A" by replacing the j — th column by b’. By

propositions 2.4 and 2.5 respectively, we obtain
size(x) < n+ 2n(size(4"") + size(A")) < 4n(size(A") + size(b")).
If b = +e; then | det(A4"") | is the absolute value of a sub determinant of A"

The size of x can then be further bounded as:
size(x) < 4n - size(A").

This follows because A’ has fewer rows and columns compared to the full
matrix A, reducing the maximum size contribution. Q.E.D.

Utilizing results from Schrijver (1998) and Cook et al., (1986), we derive
bounds on the size of optimal solutions by analyzing the bit-length of vertices
of and properties of rational systems.

IV. Applications: Production Scheduling Problem

i) Integer Programming: The equivalence of boundedness conditions
simplifies complexity analyses for mixed-integer programming problems
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Problem Setup

A factory produces two products, A and B, using two resources, labor and
material. The available resources are limited to 100 hours of labor and 80
units of material. The profit for producing one unit of A is $50, and for B, it's
$40. The problem is to determine the production quantities x4 (units of A)
and x, (units of B) to maximize profit, subject to the following constraints:

Labor constraint: 2x; + 1x, < 100,
Material constraint: 1x; + 2x, < 80.

This is a linear programming (LP) problem. However, if the production
quantities x4 and x, must be integers (e.g., you cannot produce fractional
units), the problem becomes a mixed-integer programming (MIP) problem.

Rational Polyhedron and Integer Hull

e The feasible region defined by the constraints is a rational polyhedron
P, containing all real-valued solutions that satisfy the constraints.

o The integer hull P; is the convex hull of all integer solutions within P.
It represents the feasible region for the MIP problem.

Boundedness Analysis

1. Boundedness of P: The polyhedron P is bounded since it is enclosed
by the constraints 2x; + 1x, <100 and x; + 2x, < 80, which
intersect in the positive quadrant.

2. Boundedness of P;: The integer hull P;, being a subset of P, is also
bounded. This follows from the equivalence of boundedness
conditions: if max{c"x: x € P} is bounded, then max{c'x:x € P,,}
is bounded.

Simplifying the Analysis

Rather than analyzing the mixed-integer programming (MIP) problem
directly, the equivalence of boundedness conditions enables us to reduce the
problem to examining the associated rational polyhedron PPP. Once PPP is
verified to be bounded, it follows that the integer hull PIP_IP1 is also bounded
(Laisin and Edike, 2025a). This approach eliminates the need for exhaustive
enumeration or verification over all integer solutions.
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Solving the Problem

The integer solutions can then be obtained by applying integer programming
techniques, such as branch-and-bound or cutting planes, which operate within
the bounded integer hull Py, . Thus, reducing the boundedness check to P, the
analysis simplifies significantly, saving computational effort and making the
problem more tractable.

i) Computational Geometry: Solution size bounds assist in designing
efficient algorithms for convex hull and vertex enumeration.

Application Context

Consider the problem of computing the convex hull of a set of points in R".
Convex hull algorithms, such as QuickHull or Graham's scan, rely on
numerical representations of the points and may involve large computations
when the coordinates of the points have a high bit-length. Efficient algorithms
benefit from guarantees about the size of intermediate and final solutions,
which directly impacts computation time and memory usage.

Problem Setup

Let P ={x € R™: Ax < b} be a rational polyhedron defined by m linear
inequalities, where A € Q™*™. The goal is to compute the convex hull of the
integer points in P, denoted conv(Py).

Solution Size Bounds

From theoretical results, if an optimal solution x to a linear program over P
exists, its size is bounded as:

size(x) < 4n(size(A) + size(b)).

This means each vertex of the convex hull conv(P;) has coordinates with a
bit-length constrained by this bound.

Application to Convex Hull Algorithms
a. Numerical Stability:

o Algorithms like QuickHull require operations on vertex
coordinates, such as comparing slopes or calculating
determinants. Knowing the bounds on the size of x ensures
that these operations remain numerically stable and feasible
on finite-precision systems.
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b. Efficient Data Structures:

o Solution size bounds guide the choice of data structures. For
example, if the bound indicates small bit-lengths, lightweight
data structures (e.g., arrays with fixed-width integers) can be
used, reducing memory overhead.

c. Algorithm Design:

o When enumerating vertices of conv(P;), solution size
bounds restrict the search space, enabling pruning strategies
in branch-and-bound algorithms. For example, if a candidate
vertex exceeds the size bounds, it can be discarded without
further computation.

Application in R?

Suppose P is a polygon defined by:

P={x€R%*2x; +x, <10, x; + 3x, < 15, x4, x, > 0}.
The integer points in P are (0, 0), (1,0), (2,0), ..., (4, 3).

e The convex hull of these points forms a polygon whose vertices are
subsets of the integer points.

e Using the size bounds, we confirm that all integer solutions x =
(x1,x2) satisfy size(x) <4(2+2) =16, ensuring efficient
computations.

iii) Impact on Algorithms: With these bounds:

o Vertex Enumeration: We avoid considering infeasible points with
excessively large coordinates.

e Convex Hull Computation: Ensures that the algorithm’s runtime is
proportional to the actual feasible vertices, reducing unnecessary
overhead.

This example demonstrates how solution size bounds provide theoretical
guarantees that directly improve the efficiency and practicality of convex hull
and vertex enumeration algorithms. Thus, it improves the bounds that
contributes to better prerecession and numerical stability in LP solvers.

V. Conclusion

This paper has established key theoretical results in rational linear
programming and polyhedral optimization, with a focus on boundedness
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conditions and solution size constraints. We proved the equivalence of
boundedness between rational polyhedral and their integer hulls and derived
explicit bounds on the numerical size of optimal solutions. These
contributions deepen the understanding of the structural and numerical
properties of optimization problems. Beyond their theoretical significance,
the results have practical implications for computational optimization—
particularly in enhancing algorithmic efficiency and ensuring numerical
stability in solver implementations.

V1. Recommendations

Future work may explore extensions to non-convex settings, where the
feasible regions are no longer polyhedral, presenting new challenges in
understanding boundedness and solution representation. Another promising
direction involves generalizations to cases with irrational coefficients, which
require advanced techniques to address the complexities introduced by non-
rational systems. Furthermore, integrating these theoretical insights into
practical optimization software and exploring their impact on real-world
applications, such as logistics, network design, and machine learning, could
significantly enhance the utility and scope of rational LP and polyhedral
optimization. Such efforts would bridge the gap between theoretical
advancements and their practical implementations, fostering innovation in
both academic and industrial domains.
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