Characterizing Boundedness and Solution Size in Rational Linear Programming and Polyhedrall Optimization

Mark Laisin, Collins Edike & R. N. Ujumadu

Abstract

This paper investigates the boundedness conditions and solution size constraints in rational linear programming (LP) and polyhedral optimization. We establish necessary and sufficient conditions under which the optimization of linear functions over rational polyhedral remains bounded and derive explicit bounds on the numerical size of optimal solutions, when they exist. Central to our analysis is the equivalence of boundedness between a rational polyhedron and its integer hull, providing new insights into the structure of feasible regions. We also present size bounds for solutions in terms of the bit-length of rational data, demonstrating how these results impact the complexity and numerical stability of LP solvers. The theoretical framework builds upon polyhedral geometry, sub-determinants, and the properties of rational systems, and is supported by rigorous proofs. Applications are explored in mixed-integer programming, convex hull computation, and production scheduling, where our results enhance both theoretical understanding and computational efficiency. These findings contribute to the deeper interplay between discrete and continuous optimization, offering valuable implications for algorithm design and numerical analysis.

Keywords: rational linear programming, polyhedral optimization, boundedness conditions, integer hull, solution size bounds, rational coefficients, computational geometry, optimization algorithms, numerical stability

I. Introduction

Linear programming (LP) has long played a foundational role in optimization theory and computational mathematics. Its origins can be traced to the 1930s, notably through the pioneering work of Leonid Kantorovich, who formulated optimization models to address resource allocation problems in economic planning (Kantorovich, 1939). His contributions laid the groundwork for

linear optimization and were later recognized with the Nobel Prize in Economics.

The practical relevance of LP accelerated during and after World War II, when George Dantzig introduced the simplex method for optimizing military logistics and operations (Dantzig, 1947). Despite its potential for exponential time complexity in the worst case, the simplex algorithm has remained a practical cornerstone in solving LP problems due to its efficiency and implementability.

The development of rational linear programming—where constraints and objectives involve rational coefficients—has gained prominence with advances in algorithmic design and numerical analysis. In particular, Karmarkar's introduction of the interior-point method in the 1980s provided a polynomial-time alternative to the simplex method, bringing further attention to the role of numerical stability and solution size in optimization (Karmarkar, 1984).

Parallel to these developments, polyhedral optimization has emerged as a central topic at the intersection of combinatorics, geometry, and operations research. Polyhedral, defined as intersections of finitely many half-spaces, represent feasible regions of LP problems and possess rich structural properties. Among these, the integer hull—the convex hull of all integer points within a polyhedron—has become fundamental in understanding and solving integer and mixed-integer programming problems (Nemhauser and Wolsey, 1999).

Recent advances in polyhedral theory—including the study of rational polyhedral and their applications in computational geometry and combinatorial optimization—continue to enrich our understanding of both structural and algorithmic aspects (Laisin et al., 2024). In a related contribution, Laisin and Adigwe (2025b), in their paper titled "Implementation and Comparative Analysis of the AMGT Method in Maple 24: Convergence Performance in Optimization Problems", examined the convergence behavior of the AMGT method. Their results demonstrated that the feasible solutions generated by the method remain bounded.

This paper focuses on two key aspects of rational linear and polyhedral optimization:

- ➤ Characterizing conditions under which the optimization of a linear function over a rational polyhedron is bounded;
- Establishing explicit bounds on the size of optimal solutions in terms of input data.

These contributions build upon classical results in LP and integer programming (e.g., Schrijver, 1998) and offer refined insights with significant implications for computational efficiency, solution representation, and numerical stability.

II. Preliminaries and Definitions

Definition 2.1: Sub-determinant

Let A be an integral matrix. A sub-determinant of A is |B| for some square sub-matrix B of A (defined by arbitrary row and column indices). We write $\Xi(A)$ for the maximum absolute value of the sub-determinants of A.

Definition 2.2: Polyhedron

Linear Programming deals with optimizing a linear objective function of finitely many variables subject to finitely many linear inequalities. So the set of feasible solutions is the intersection of finitely many half spaces. Such a set is called a polyhedron.

Definition 2.3: Polyhedron in \mathbb{R}^n

It is a set of type

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

for some matrix $A \in \mathbb{R}^{m \times n}$ and some vector $b \in \mathbb{R}^m$. If A and b are rational, then P is a rational polyhedron. A bounded polyhedron is also called a polytope.

We denote the rank of a matrix A by rank(A). The dimension dim X of a nonempty set:

$$x \subseteq \mathbb{R}^n$$

is defined to be $n - \max rank(A)$

$$\{rank(A): A \text{ is an } n \times n - \text{matrix with } Ax = Ay \text{ for all } x, y \in X\}$$

A polyhedron $P \subseteq \mathbb{R}^n$ is called full-dimensional if $\dim P = n$

Equivalently, a polyhedron is full-dimensional if and only if there exist a point x^* in its interior. (Genova and Guliashki, 2011).

Proposition 2.1: Nonempty polyhedron: Let

$$P = \{x : Ax \le b\}$$

be a nonempty polyhedron. If c is a nonzero vector for which $\boldsymbol{\delta} := \max\{cx : x \in P\}$

is finite, then $\{cx : x = \delta\}$ is called a supporting hyperplane of P. A face of P is P itself or the intersection of P with a supporting hyperplane of P. A point x for which $\{x\}$ is a face is called a vertex of P, and also a basic solution of the system $Ax \le b$ (Genova and Guliashki, 2011).

Proposition 2.2: Let

$$P := \{x : Ax \le b\}$$

be a polyhedron and $F \subseteq P$. Then the following statements are equivalent:

- (a) F is a face of P.
- (b) There exists a vector c such that $\delta := \max\{cx : x \in P\}$ is finite and

$$F = \{cx = \delta : x \in P\}$$

(c) $F := \{x \in P : A'x = b'\} \neq \emptyset$; for some subsystem $A'x \leq b'$ of $Ax \leq b$ (Genova and Guliashki, 2011).

Corollary 2.1: Let P be a polyhedron and F a face of P. Then F is again a polyhedron. Furthermore, a set $F' \subseteq F$ is a face of P if and only if it is a face of F (Genova and Guliashki, 2011).

Proposition 2.3: Let $P = \{x : Ax \le b\}$ be a polyhedron. A nonempty subset $F \subseteq P$ is a minimal face of P if and only if it is a face of;

$$F = \{x : A'x = b'\}$$

for some subsystem $A'x \le b'$ of $Ax \le b$ (Akif and Cihan, 2008)

Proposition 2.4: For any rational square matrix A we have $size \ det \ A \le 2size(A)$

Proposition 2.5: If $x, y \in \mathbb{Q}^n$ are rational vectors, then

$$size(x + y) \le 2(size(x) + size(y))$$

$$size(x^Ty) \le 2(size(x) + size(y))$$
 (Laisin et al., 2024).

Definition 2.4: Integer programming problem (IPP)

The IPP is a special class of linear programming problem (LPP) where all or some of the variables in the optimal solution are restricted to assume non-negative-integer values. Thus the general IPP can be stated as follows.

Optimize the linear function

Optimize
$$Z = \sum_{i=1}^{n} c_i x_i$$
 ... (1)

Subject to the constraints.

$$\sum_{i=1}^{n} a_{ij} x_{i} \leq b_{i}, \quad j = 1, 2, ..., m \qquad ... (2)$$

 $x_i \ge 0$ and some x_i are integers.

There are two types of the Integer Programming Problems (Elmuti, 2003; Genova and Guliashki, 2011).

Definition 2.5: All integer programming problem

An IPP. is termed as all IPP or pure IPP if all the variables in the optimal solution are restricted to assume non-negative integer values.

Definition 2.6: Mixed integer programming problem (MIPP)

An IPP is termed as mixed MIPP if only some variables in the optimal solution are restricted to assume non-negative integer values while the remaining variables are free to take any non-negative values (Gupta *et al.*, 2014).

Importance of IPP

Quite often, in business and industry we require the discrete nature or values of the variables involved in many decision-making situations. For example, in a factory manufacturing trucks or cars etc. the quantity or number manufactured can be a whole discrete number only as a fraction of truck or car is not required. In assignment problems and travelling salesman problems etc. the variables involved can assume integer values only. In allocation of goods, a shipment must involve a discrete number of trucks etc. in sequencing and routing decisions we require the discrete values of variables. Thus, we come across many integer programming problems and hence need some systematic procedure for obtaining the exact optimal integer solution to such problems (Elmuti, 2003; Genova and Guliashki, 2011).

III. Main Results

Lemma: (Boundedness equivalence)

Let $P = \{x: Ax \le b\}$ be some rational polyhedron whose integer hull is nonempty, and let c be some vector (not necessarily rational). Then

$$\max\{cx: x \in P\}$$

is bounded if and only if $\max\{cx: x \in P_1\}$ is bounded.

Proof:

Suppose $\max\{cx: x \in P\}$ is unbounded. Then Corollary 3.2.8 says that the system

$$yA = c$$
. $y \ge 0$

has no solution. By Corollary 3.26 there is a vector \mathbf{z} . With $e\mathbf{z} < 0$ and $A\mathbf{z} \ge \mathbf{0}$. Then the

$$LP \min\{cz: Az \geq 0, -\|\leq z \leq \|\}$$

is feasible. Let \mathbf{z}^* be an optimum basic solution of this $\mathbf{LP}.\mathbf{z}^*$ is rational as it is a vertex of a rational polytope. Multiply \mathbf{z}^* by a suitable natural number to obtain an integral vector $\boldsymbol{\omega}$ with $A\boldsymbol{\omega} \geq \mathbf{0}$ and $c\boldsymbol{\omega} < 0$. Let $\boldsymbol{v} \in P_1$ be some integer vector. Then $\boldsymbol{v} - k\boldsymbol{\omega} \in P_1$ for all $k \in \mathbb{N}$, and thus $\max\{c\boldsymbol{x}: \boldsymbol{x} \in P_1\}$ is unbounded. The other direction is trivial.

Theorem (Rational matrices and vertices of polytopes)

Consider the rational linear programming (LP) problem:

LP:
$$max\{c^Tx: Ax \leq b\}$$

where A and b are rational. Suppose this LP has an optimum solution. Then the following hold:

(i) Bounded Size Solution: There exists an optimum solution x such that:

$$size(x) \le 4n(size(A) + size(b))$$

(ii) Special Case (Unit Vector b): If $\mathbf{b} = \mathbf{e_i}$ or $\mathbf{b} = -\mathbf{e_i}$ for some unit vector $\mathbf{e_i}$ there exists a nonsingular submatrix \mathbf{A}' of A and an optimum solution x such that:

$$size(x) \le 4n(size(A) + size(b))$$

with each component of x satisfying:

$$size(component \ of \ x) \le 4(size(A) + size(b))$$

(iii) Reduced Submatrix Case: If $b = e_i$ or $b = -e_i$ for some unit vector e_i , then there exists a non-singular submatrix A' of A and an optimum solution x such that:

$$size(x) \leq 4n \cdot size(A')$$

Proof

The proof of Theorem 4.3 relies on these definitions 2.1, 2.2, 2.3, 2.4 and 2.5 respectively, to analyse the structure and properties of the LP problem.

Task 1: to show that, for a given LP, there exist a Solution with Bounded Size

By the fundamental theorem of linear programming, there exists an optimum solution x^* at a vertex of the feasible polytope $\{x: Ax \le b\}$.

Vertex Characterization:

A vertex x^* corresponds to a subset of constraints in $Ax \le b$ that are active (i.e., satisfied as equalities). By Corollary 2.1. the maximum is attained in a face F of

$$\{x : Ax < b\}.$$

Let $I \subseteq \{1, 2, ..., m\}$ denote the indices of active constraints, and let A_I denote the submatrix of A corresponding to these constraints. At a vertex, the system can be written as:

$$A_I x = b_I$$

where b_I is the corresponding sub vector of b.

- Non-Singularity of A_I : For x^* to be a vertex, the matrix A_I must be non-singular (invertible), and |I| = n.
- o Size of Solution:

Solving $A_I x = b_I$

$$x = A_I^{-1} b_I$$

Using bounds on the size of A_I and b_I , and the fact that A_I is rational, the entries of are bounded in terms of $size(A_I)$. Specifically, the size of x is bounded by:

$$size(x) \le 4n(size(A) + size(b)).$$

Task 2: to show that for a give LP has a Special Case $(b = e_i \text{ or } b = -e_i)$

If $b = e_i$ or $b = -e_i$, where e_i is a unit vector, the LP corresponds to finding the maximum value of $c^T x$ along a specific axis defined by e_i .

- Existence of a Non-singular Submatrix: As in task 1, there exists a vertex solution x^* , and the active constraints correspond to a nonsingular submatrix A' of A.
- Bound on Solution Size:
 Similar to the general case, the size of x is bounded by:

$$size(x) \le 4n(size(A) + size(b)),$$

with the size of each component of x further bounded by:

$$size(component\ of\ x) \leq 4(size(A) + size(b)).$$

Task 3: to show that for a give LP has reduced submatrix: Let $F' \subseteq F$ be a minimal face. By corollary $2.1F' = \{x : A'x = b'\}$ for some subsystem $A'x \le b'$ of $Ax \le b$.

Then, in the special case where $b = e_i$ or $b = -e_i$, let A' denote the nonsingular submatrix corresponding to the active constraints at the optimum.

Now, we may assume that the rows of A' are linearly independent. We then take a maximal set of linear independent columns (call this matrix A'') and set all other components to zero. Then

$$x = (A'')^{-1}b',$$

filled up with zeros, is an optimum solution to our LP. By Cramer's rule the entries of x are given by

$$x_i = \frac{\det A^{\prime\prime\prime}}{\det A^{\prime\prime\prime}} ,$$

where A''' arises from A'' by replacing the j - th column by b'. By propositions 2.4 and 2.5 respectively, we obtain

$$size(x) \le n + 2n(size(A''') + size(A'')) \le 4n(size(A'') + size(b')).$$
 If $b = \pm e_i$ then $|\det(A''')|$ is the absolute value of a sub determinant of A'' .

The size of x can then be further bounded as:

$$size(x) \leq 4n \cdot size(A')$$
.

This follows because A' has fewer rows and columns compared to the full matrix A, reducing the maximum size contribution. Q.E.D.

Utilizing results from Schrijver (1998) and Cook *et al.*, (1986), we derive bounds on the size of optimal solutions by analyzing the bit-length of vertices of and properties of rational systems.

IV. Applications: Production Scheduling Problem

i) Integer Programming: The equivalence of boundedness conditions simplifies complexity analyses for mixed-integer programming problems

Problem Setup

A factory produces two products, A and B, using two resources, labor and material. The available resources are limited to 100 hours of labor and 80 units of material. The profit for producing one unit of A is \$50, and for B, it's \$40. The problem is to determine the production quantities x_1 (units of A) and x_2 (units of B) to maximize profit, subject to the following constraints:

Labor constraint: $2x_1 + 1x_2 \le 100$,

Material constraint: $1x_1 + 2x_2 \le 80$.

This is a linear programming (LP) problem. However, if the production quantities x_1 and x_2 must be integers (e.g., you cannot produce fractional units), the problem becomes a mixed-integer programming (MIP) problem.

Rational Polyhedron and Integer Hull

- The feasible region defined by the constraints is a rational polyhedron P, containing all real-valued solutions that satisfy the constraints.
- The integer hull P_I is the convex hull of all integer solutions within P. It represents the feasible region for the MIP problem.

Boundedness Analysis

- 1. Boundedness of P: The polyhedron P is bounded since it is enclosed by the constraints $2x_1 + 1x_2 \le 100$ and $x_1 + 2x_2 \le 80$, which intersect in the positive quadrant.
- **2.** Boundedness of P_I : The integer hull P_I , being a subset of P, is also bounded. This follows from the equivalence of boundedness conditions: if $\max\{c^Tx:x\in P\}$ is bounded, then $\max\{c^Tx:x\in P_I\}$ is bounded.

Simplifying the Analysis

Rather than analyzing the mixed-integer programming (MIP) problem directly, the equivalence of boundedness conditions enables us to reduce the problem to examining the associated rational polyhedron PPP. Once PPP is verified to be bounded, it follows that the integer hull PIP_IPI is also bounded (Laisin and Edike, 2025a). This approach eliminates the need for exhaustive enumeration or verification over all integer solutions.

Solving the Problem

The integer solutions can then be obtained by applying integer programming techniques, such as branch-and-bound or cutting planes, which operate within the bounded integer hull P_I , . Thus, reducing the boundedness check to P, the analysis simplifies significantly, saving computational effort and making the problem more tractable.

ii) Computational Geometry: Solution size bounds assist in designing efficient algorithms for convex hull and vertex enumeration.

Application Context

Consider the problem of computing the convex hull of a set of points in \mathbb{R}^n . Convex hull algorithms, such as QuickHull or Graham's scan, rely on numerical representations of the points and may involve large computations when the coordinates of the points have a high bit-length. Efficient algorithms benefit from guarantees about the size of intermediate and final solutions, which directly impacts computation time and memory usage.

Problem Setup

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a rational polyhedron defined by m linear inequalities, where $A \in \mathbb{Q}^{m \times n}$. The goal is to compute the convex hull of the integer points in P, denoted $conv(P_I)$.

Solution Size Bounds

From theoretical results, if an optimal solution x to a linear program over P exists, its size is bounded as:

$$size(x) \leq 4n(size(A) + size(b)).$$

This means each vertex of the convex hull $conv(P_I)$ has coordinates with a bit-length constrained by this bound.

Application to Convex Hull Algorithms

a. Numerical Stability:

 Algorithms like QuickHull require operations on vertex coordinates, such as comparing slopes or calculating determinants. Knowing the bounds on the size of x ensures that these operations remain numerically stable and feasible on finite-precision systems.

b. Efficient Data Structures:

 Solution size bounds guide the choice of data structures. For example, if the bound indicates small bit-lengths, lightweight data structures (e.g., arrays with fixed-width integers) can be used, reducing memory overhead.

c. Algorithm Design:

o When enumerating vertices of $conv(P_I)$, solution size bounds restrict the search space, enabling pruning strategies in branch-and-bound algorithms. For example, if a candidate vertex exceeds the size bounds, it can be discarded without further computation.

Application in \mathbb{R}^2

Suppose P is a polygon defined by:

$$P = \{x \in \mathbb{R}^2 : 2x_1 + x_2 \le 10, x_1 + 3x_2 \le 15, x_1, x_2 \ge 0\}.$$

The integer points in P are (0,0), (1,0), (2,0), ..., (4,3).

- The convex hull of these points forms a polygon whose vertices are subsets of the integer points.
- Using the size bounds, we confirm that all integer solutions $x = (x_1, x_2)$ satisfy $size(x) \le 4(2 + 2) = 16$, ensuring efficient computations.
- iii) Impact on Algorithms: With these bounds:
 - Vertex Enumeration: We avoid considering infeasible points with excessively large coordinates.
 - Convex Hull Computation: Ensures that the algorithm's runtime is proportional to the actual feasible vertices, reducing unnecessary overhead.

This example demonstrates how solution size bounds provide theoretical guarantees that directly improve the efficiency and practicality of convex hull and vertex enumeration algorithms. Thus, it improves the bounds that contributes to better prerecession and numerical stability in LP solvers.

V. Conclusion

This paper has established key theoretical results in rational linear programming and polyhedral optimization, with a focus on boundedness

conditions and solution size constraints. We proved the equivalence of boundedness between rational polyhedral and their integer hulls and derived explicit bounds on the numerical size of optimal solutions. These contributions deepen the understanding of the structural and numerical properties of optimization problems. Beyond their theoretical significance, the results have practical implications for computational optimization—particularly in enhancing algorithmic efficiency and ensuring numerical stability in solver implementations.

VI. Recommendations

Future work may explore extensions to non-convex settings, where the feasible regions are no longer polyhedral, presenting new challenges in understanding boundedness and solution representation. Another promising direction involves generalizations to cases with irrational coefficients, which require advanced techniques to address the complexities introduced by non-rational systems. Furthermore, integrating these theoretical insights into practical optimization software and exploring their impact on real-world applications, such as logistics, network design, and machine learning, could significantly enhance the utility and scope of rational LP and polyhedral optimization. Such efforts would bridge the gap between theoretical advancements and their practical implementations, fostering innovation in both academic and industrial domains.

References

- Akif, M B. and Cihan, A. (2008). A 0-1 integer programming approach to a university timetabling problem. *Hacettepe Journal of Mathematics and Statistics*, 37: 41-55.
- Cook, W., Cunningham, W. H., Pulleyblank, W. R., & Schrijver, A. (1986). Combinatorial Optimization. Wiley.
- Dantzig, G. B. (1947). *Linear Programming and Extensions*. Princeton University Press.
- Dantzig, G. B. (1947). *Maximization of a linear function of variables subject to linear inequalities*. In T. C. Koopmans (Ed.), *Activity Analysis of Production and Allocation* (pp. 339-347). Wiley.
- Elmuti, D. (2003). The perceived impact of outsourcing on organizational performance. *American Journal of Business*, 18: 33-42.
- Genova, K. and Guliashki, V. (2011). Linear integer programming methods and approaches a survey. *Journal of Cybernetics and Information Technologies*. *Vol* 11.

Gupta, Prem Kumar (Er.) and D. S. Hira (2014); Operations Research seventh revised edition. By Rajendra Ravindra Pvt Ltd, ram Nagar New Delhi-

110055 and published by S. Chand & Company Pvt Ltd, India

- Kantorovich, L. V. (1939). *Mathematical Methods in the Organization and Planning of Production*. Leningrad State University.
- Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. *Combinatorica*, 4(4), 373-395.
- Laisin, M., Edike, C. and Bright O. Osu (2024); The construction of rational polyhedron on an $\mathbf{n} \times \mathbf{n}$ board with some application on integral polyhedral. TIJER, ISSN 2349-9249, Vol 11, Issue 11, www.tijer.org.
- Laisin, M., & Edike, C. (2025a). Hybrid Optimization with Integer Constraints: Modeling and Solving Problems Using Simplex Techniques. *Journal of Medicine, Engineering & Physical Sciences (JOMEEPS)*. https://klamidas.com/jomeeps-v3n1-2025-01/
- Laisin, M., & Adigwe, R. U. (2025b). Implementation and comparative analysis of AMGT method in Maple 24: Convergence performance in optimization problems. *Global Online Journal of Academic Research* (*GOJAR*), 4(52), 26–40. https://klamidas.com/gojar-v4n1-2025-02/
- Nemhauser, G. L., & Wolsey, L. A. (1999). *Integer and Combinatorial Optimization*. Wiley.

Schrijver, A. (1998). Theory of Linear and Integer Programming. Wiley.

Author Information: Mark Laisin is a Professor of Applied Mathematics at Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria. *Email*: laisinmark@gmail.com

Collins Edike is of the Department of Mathematics, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria.

Email: edikecollins505@gmail.com

R. N. Ujumadu is of the Department of Mathematics, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria.

Email: rozyngujmadu@yahoo.com

CITING THIS ARTICLE

Laisin, M., Edike, C., & Ujumadu, R. N. (2025). Characterizing Boundedness and Solution Size in Rational Linear Programming and Polyhedrall Optimization. *Global Online Journal of Academic Research* (*GOJAR*), 4(2), 63-76. https://klamidas.com/gojar-v4n2-2025-04/.

MLA

Laisin, Mark, Edike, Collins, & Ujumadu, R. N. "Characterizing Boundedness and Solution Size in Rational Linear Programming and Polyhedrall Optimization". *Global Online Journal of Academic Research* (*GOJAR*), vol. 4, no. 2, 2025, pp. 63-76. https://klamidas.com/gojar-v4n2-2025-04/.