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Abstract 

This paper presents a hybrid optimization framework for solving linear 

integer programming (LIP) problems using Simplex-based techniques. 

Building on the classical Simplex method and integrating it with branch-and-

bound, cutting-plane, and heuristic approaches, the proposed methodology 

addresses the complexity of integer-constrained decision-making in areas 

such as scheduling, logistics, and resource allocation. A brief historical 

overview of the Simplex method and its evolution into LIP solutions is 

provided, along with theoretical insights into feasibility, constraint 

preservation, and solution structure. The effectiveness of the hybrid approach 

is demonstrated through a real-world application at Innoson Vehicle 

Manufacturing, showcasing how the integrated method improves solution 

accuracy and computational efficiency in practical settings. This study 

contributes to the broader field of optimization by offering a unified, 

adaptable approach for modeling and solving complex integer programming 

problems. 

Keywords: Simplex method, Linear Integer Programming (LIP), Branch-and-

bound, Resource allocation 

 

I. INTRODUCTION 

Optimization techniques have become essential tools in mathematics, 

economics, operations research, and computer science. Among these, linear 

programming (LP) has played a foundational role in modeling and solving a 

wide array of real-world challenges—from resource allocation to logistics. 

The introduction of the Simplex method by George Dantzig in 1947 marked a 

significant milestone, offering an efficient algorithm for solving LP problems 

by navigating the vertices of the feasible region (Dantzig, 1947). 

However, many practical problems—such as workforce scheduling, 
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transportation planning, and network design—require decision variables to 

take on integer values, which standard LP techniques cannot directly handle. 

This limitation led to the development of Linear Integer Programming (LIP), 

an extension of LP that combines continuous optimization methods with 

discrete variable constraints (Wolsey, 1998). 

Despite the theoretical appeal of LIP, solving such problems efficiently 

remains a challenge due to the combinatorial explosion of possible integer 

solutions. To overcome this, hybrid optimization techniques have emerged, 

integrating the Simplex algorithm with methods like branch-and-bound, 

cutting planes, and heuristic strategies to handle integrality constraints more 

effectively (LaisinandEdike, 2025a). These hybrid approaches maintain the 

mathematical rigor of LP while enabling robust, efficient solutions to discrete 

decision-making problems in logistics, energy systems, and scheduling. 

The historical roots of LP date back to the 19th century, with Joseph Fourier's 

development of the Fourier-Motzkin elimination method for solving systems 

of inequalities (Fourier, 1824). Later, János Farkas introduced Farkas' Lemma 

(1902), which enhanced theoretical understanding of feasibility in linear 

systems. These foundational contributions culminated in Dantzig's Simplex 

Method (1947), which remains widely used in both academia and industry. 

The adaptation of the Simplex method for LIP, however, introduced new 

difficulties. Integer constraints disrupted the convex geometry exploited by 

Simplex, prompting researchers to explore hybrid strategies. Techniques like 

branch-and-bound (Land & Doig, 1960), cutting-plane methods (Gomory, 

1958), and heuristic-guided iterations have since been combined with the 

Simplex framework to tackle LIP more effectively. 

Such hybrid Simplex-based LIP models have gained traction in recent years 

across diverse sectors: 

 Supply Chain Management: Hybrid optimization is used to manage 

inventory, production, and transportation decisions involving integer 

constraints (Chauhan & Dey, 2022). 

 Transportation and Logistics: Integer-constrained problems such as 

vehicle routing and delivery scheduling benefit from integrated 

Simplex and branch-and-bound methods (López et al., 2021). 

 Scheduling: In job-shop and workforce scheduling, Simplex-based 

models are hybridized with metaheuristics to enhance feasibility and 

reduce solution time (Zhao & Kim, 2020). 

 Energy Distribution: Hybrid models optimize decisions in smart grids 

and renewable energy networks, where binary and integer variables 
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are critical (Cui et al., 2023). 

Furthermore, recent computational studies have demonstrated the advantages 

of hybrid optimization frameworks in terms of both convergence speed and 

solution stability. For example, Laisin and Adigwe (2025b) showed that 

hybrid methods—particularly those integrating gradient-based algorithms 

with integer constraints—consistently outperform classical techniques in 

complex solution spaces. Additionally, Laisin and Edike (2025c), in their 

paper titled "Characterizing Boundedness and Solution Size in Rational 

Linear Programming and Polyhedral Optimization," established that all 

feasible solutions within such rational linear systems are bounded and exhibit 

guaranteed convergence properties. 

This paper builds upon these developments by presenting a modeling 

framework and solution methodology for solving Integer-Constrained Linear 

Programs using Simplex-based hybrid optimization. The approach is 

demonstrated across multiple real-world applications, reinforcing its utility as 

a unified and adaptable solution paradigm. 

 

II. PRELIMINARIES AND METHODS 

Linear Integer Programming (LIP) involves solving combinatorial 

constrained optimization problems with integer variables, where both the 

objective function and constraints are linear relationships. This mathematical 

framework can be represented as follows: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 = ∑ 𝑎𝑖𝑗𝑥𝑖

𝑛

𝑖=1

≤ 𝑏𝑗 , 𝑗 = 1,2, … , 𝑚, 

𝑥𝑖 ∈  ℤ 𝑛,  

Where the solution 𝑥𝑖  ∈  𝑍 𝑛 is a vector of n integer variables: 𝑥𝑖  =

 (𝑥1, 𝑥2 , … , 𝑥𝑛) 𝑇 and the data are rational and are given by the 𝑚 × 𝑛 matrix 

A, the 1 × 𝑛 matrix c, and the 𝑚 × 1 matrix b. This formulation also includes 

equality constraints as each equality constraint can be represented using two 

inequality constraints like 𝑎𝑖𝑗𝑥𝑖  ≤  𝑏. There are two types of Integer 

Programming Problems: An Integer Programming Problem (IPP) involves 

finding optimal solutions to mathematical models where some or all decision 

variables are constrained to integer values. When all variables are restricted to 

non-negative integers, it is called the Pure Integer Programming Problem 
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or All Integer Programming Problem (All IPP). Conversely, if only some 

variables are constrained to be integers while others can take any non-

negative values, it is termed a Mixed Integer Programming Problem 

(Mixed IPP).  

Integer programming is a fundamental tool in optimization, enabling the 

modeling of complex decision-making processes in various fields such as 

operations research, economics, and engineering. The distinction between 

pure and mixed integer programming allows for flexibility in modeling 

scenarios where certain decisions are discrete (e.g., the number of machines 

to purchase) while others are continuous (e.g., the amount of raw material to 

use). 

Recent advancements focus on improving algorithms for solving these 

problems efficiently. For example, Del Pia (2023) explores the complexity of 

mixed integer convex quadratic programming, providing insights into 

optimization algorithms. 

Additionally, the development of algorithms utilizing Graver bases have 

enhanced solving nonlinear integer programming problems in variable 

dimensions. This approach has been particularly effective in addressing 

block-structured and n-fold integer programming challenges, contributing to 

the broader theory of sparse and bounded tree-depth integer programming. 

These advancements have significant implications for practical applications, 

enabling more efficient and effective solutions to complex optimization 

problems across various industries. 

Definitions 

 General Description: Simplex Linear Integer Programming involves 

solving optimization problems where the objective function and 

constraints are linear, and the decision variables are restricted to 

integer values, using the Simplex algorithm as the core solution 

technique (Winston, 2004; Glover et al., 2021).  

 Mathematical Perspective:The Simplex Method is an iterative 

algorithm for solving linear programming problems. It operates on a 

feasible region defined by linear inequalities and progresses toward an 

optimal solution by moving along the edges of this region 

(Nemhauser, & Wolsey, 1999; Dantzig, 2021).  

 Algorithmic Focus: Simplex Linear Integer Programming applies the 

Simplex algorithm as a basis to navigate feasible regions of linear 

programming, extended to accommodate integer variable constraints 
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(Bertsimas, &Tsitsiklis, 1997;Klein, 2018).  

  Practical Context:This class of optimization problems employs the 

Simplex method to optimize linear objective functions over decision 

variables restricted to integer values. These models are widely utilized 

in scheduling, resource allocation, and logistics, where decisions often 

involve discrete quantities (Schrijver, 1986; Schrijver, 2017). 

However, Laisin et al. (2024), in their study titled “The Construction 

of Rational Polyhedra on an n × n Board with Some Applications to 

Integral Polyhedral Theory,” demonstrated that certain polyhedra—

particularly those analyzed graphically—necessitate integer-valued 

solutions to accurately define feasible regions. Their findings 

underscore the importance of incorporating integer constraints when 

modeling real-world problems where fractional solutions are not 

practical or permissible. 

  Hybrid Approach: Simplex Linear Integer Programming integrates 

the principles of linear programming and combinatorial optimization 

to solve integer-restricted problems, balancing computational 

efficiency and precision. (Hillier, & Lieberman, 2020; Klose &Drexl, 

2022).  

 Linear Integer Programming (LIP): A mathematical optimization 

problem where the objective function is linear, and the decision 

variables are required to take integer values. These problems are 

commonly subject to linear constraints, including bounds and 

relationships between the variables (Vanderbei, 2022). 

 Branch-and-Bound: A general algorithm for solving integer and 

combinatorial optimization problems. It systematically explores the 

solution space by dividing it into subproblems and eliminating 

suboptimal solutions using bounds (Land & Doig, 2021). 

 Feasibility and Optimality Conditions: In linear programming, 

feasibility refers to whether there exists a set of values for the decision 

variables that satisfies all the constraints. A solution is feasible if it 

lies within the feasible region, which is the set of all points that satisfy 

the constraints. (Dantzig, 1947). 

The Cutting-Plane method is particularly useful in situations where the 

solution space is continuous but needs to be restricted to integer points. The 

cutting-plane algorithm, often combined with other techniques like branch-

and-bound, is used in large-scale ILP problems, especially when dealing with 

complex or non-convex feasible regions (Balas, 2022). 



Global Online Journal of Academic Research (GOJAR), Vol. 4, No. 2, August 2025 

 

 

27 
 

Duality in linear programming refers to the relationship between two 

optimization problems: the primal problem and its dual. The primal problem 

involves the direct optimization of an objective function subject to 

constraints, while the dual problem involves the optimization of a related 

objective function subject to dual constraints. The solutions to the primal and 

dual problems are related by the duality theorem, which states that under 

certain conditions, the optimal values of the primal and dual problems are 

equal. Duality plays a crucial role in understanding the properties of 

optimization problems, and it has important applications in sensitivity 

analysis and the development of algorithms like interior-point methods 

(Vanderbei, 2022). 

The integration of the Simplex method with modern computational 

advancements has expanded its utility. Hybrid algorithms, combining branch-

and-bound with cutting-plane techniques, harness the strengths of the 

Simplex method while leveraging computational power to tackle increasingly 

complex problems. Machine learning techniques have also been integrated 

with LIP to predict better initial solutions, speeding up the optimization 

process.  

This paper successfully aimed to unify diverse requirement policies from 

various domains into a cohesive general model, utilizing the Simplex linear 

integer technique to ensure the optimal solution remains within the feasible 

region. This approach demonstrates a significant step forward in creating a 

unified framework while maintaining mathematical rigour. 

III. Results  

3.1 Adding, Subtracting, Or Scaling:  Let Z be the feasible solution set of 

an Integer Programming Problem (I.P.P.), defined by a system of linear 

constraints. If a new constraint is obtained by adding, subtracting, or scaling 

any of the existing constraints by a non-zero scalar, then every solution in Z 

satisfies the new constraint. 

Proof: 

Consider Z as the feasible solution set of an Integer Programming Problem 

(I.P.P.), defined by a system of linear constraints: 

𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑍𝑛 

where A is an 𝑚 × 𝑛 matrix of coefficients, b is a vector of size m, and x is 

the vector of integer decision variables. 

Assume a new constraint  𝑐𝑇𝑥 ≤ 𝑑 is derived by manipulating the existing 

constraints through addition, subtraction, or scaling. This implies that  𝑐𝑇 and 
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d are obtained as linear combinations of rows of A and elements of b, 

respectively. Specifically, the new constraint can be represented as: 

 𝑐𝑇 = 𝜆1𝑎1
𝑇 + 𝜆2𝑎2

𝑇 + ⋯ + 𝜆𝑚𝑎𝑚
𝑇  

  

𝑑 = 𝜆1𝑏1 + 𝜆2𝑏2 + ⋯ + 𝜆𝑚𝑏𝑚 

where 𝜆1, 𝜆2, ⋯ , 𝜆𝑚, are scalars (not all zero), and 𝑎𝑖
𝑇 are rows of A, with 𝑏𝑖 

being the corresponding elements of b. 

We now assess the Feasibility of Z under 𝐴𝑥 ≤ 𝑏. By definition, each 

solution 𝑥 ∈ 𝑍 satisfies: 

𝑎𝑖
𝑇 ≤ 𝑏𝑖, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 

Therefore, the feasible set Z consists of all 𝑥 ∈ 𝑍𝑛 that satisfies all these m 

constraints. 

The new constraint  𝑐𝑇𝑥 ≤ 𝑑 is derived from a valid linear combination of the 

original constraints: 

𝜆1(𝑎1
𝑇 ≤ 𝑏1), 𝜆2(𝑎2

𝑇 ≤ 𝑏2), ⋯ , 𝜆𝑚(𝑎𝑚
𝑇 ≤ 𝑏𝑚) 

Adding or subtracting these constraints results in: 

𝜆1𝑎1
𝑇 + 𝜆2𝑎2

𝑇 + ⋯ + 𝜆𝑚𝑎𝑚
𝑇 ≤  𝜆1𝑏1 + 𝜆2𝑏2 + ⋯ + 𝜆𝑚𝑏𝑚 

  

Which simplifies to: 

 𝑐𝑇𝑥 ≤ 𝑑 

Since this new inequality is a linear combination of the original constraints, it 

is satisfied by any x that satisfies the original constraints. 

Hence, everysolution 𝑥 ∈ 𝑍 satisfies all original constraints 𝐴𝑥 ≤ 𝑏. Because 

the new constraint  𝑐𝑇𝑥 ≤ 𝑑 is a consequence of these constraints, every 𝑥 ∈

𝑍 must also satisfy  𝑐𝑇𝑥 ≤ 𝑑. 

Therefore, the introduction of  𝑐𝑇𝑥 ≤ 𝑑 does not eliminates any solutions in Z 

as the constraint is already satisfied by all 𝑥 ∈ 𝑍. Therefore, the feasible set Z 

remains unchanged. 

We have shown that any new constraint derived by adding, subtracting, or 

scaling the existing constraints by a non-zero scalar is satisfied by every 

solution in Z. Hence, the theorem is proven. Q.E.D. 
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3.2 Constraint Preservation in Integer Programming Problems: 

Let Z be the feasible solution set of an Integer Programming Problem (I.P.P.), 

defined by a system of linear constraints 𝐴𝑥 ≤ 𝑏, where A is an 𝑚 × 𝑛 

matrix, b is a vector of size m, and 𝑥 ∈ 𝑍𝑛. Suppose 𝑥∗ is a solution obtained 

by the Simplex technique that includes fractional parts for one or more 

variables. Then: 

a. The solution 𝑥∗ satisfies all constraints in the original system 𝐴𝑥 ≤ 𝑏. 

b. Any new constraint  𝑐𝑇𝑥 ≤ 𝑑 derived by: 

o Adding or subtracting two or more constraints from the 

original system, or 

o Scaling any constraint by a non-zero scalar, is also satisfied by 

𝑥∗  and all feasible integer solutions in Z 

Construction 

To proceed, we first introduce two key concepts as follows: Suppose 𝜌 = 𝑎
1

𝑏
 

Let ⌈𝜌⌉ =largest integral part of number 𝑎, i.e. the greatest integer less than 𝑎, 

and 𝜇 =positive fractional part of number 𝑎,  

thus, we have 𝜌 = ⌈𝜌⌉ + 𝜇,  clearly 0 ≤ 𝜇 < 1, for example 

(i) If 𝜌 = 𝑎
1

𝑏
 then ⌈𝜌⌉ = 𝑎 and 𝜇 =

1

𝑏
 so that 𝑎

1

𝑏
= 𝑎 +

1

𝑏
 .  ∀ 𝑏 ∈ ℤ+  and 

(ii) If 𝜌 = −𝑎
1

𝑏
 then ⌈𝜌⌉ = −(𝑎 + 1) and 𝜇 =

2

𝑏
  so that 

−𝑎
1

𝑏
= − (𝑎 +

1

𝑏
) ≥ −(𝑎 + 1),   ∀ 𝑎, 𝑏 ∈ ℤ+ 

Now, we proceed with the construction of the Gomory constraint as follows. 

Let the optimal solution of the maximization Linear Programming Problem 

(L.P.P.), ignoring the integer requirements of the variables, be expressed in 

the following table: 3.1.  

In this table: 3.1, the basic variables 𝑥𝐵1
, 𝑥𝐵2

, … , 𝑥𝐵𝑚
 are arranged in a 

convenient order for clarity. 
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Let the 𝑖𝑡ℎ basic variable 𝑥𝐵𝑖
 be a non-integer 

Note that 1 ≤ 𝑖 ≤ 𝑚. Therefore, using 𝑖𝑡ℎ row of Table: 3.1, we have 

𝑥𝐵𝑖
= 0. 𝑥1 + 0. 𝑥2 + ⋯ + 0. 𝑥𝑚 + 𝑦𝑖,𝑚+1𝑥𝑚+1 + ⋯ + 𝑦𝑖𝑛𝑥𝑛 

= 𝑥𝑖 + ∑ 𝑦𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑚+1

 

.  

𝑥𝑖 = 𝑥𝐵𝑖
− ∑ 𝑦𝑖𝑗𝑥𝑗      ∀𝑖 = 1, 2,   ⋯ , 𝑛                                         3.1

𝑛

𝑗=𝑚+1

 

Let 𝑥𝐵𝑖
= ⌈𝑥𝐵𝑖

⌉ + 𝜇𝐵𝑖
 and 𝑦𝑖𝑗 = ⌈𝑦𝑖𝑗⌉ + 𝜇𝑖𝑗 where ⌈𝑥𝐵𝑖

⌉ and ⌈𝑦𝑖𝑗⌉ are the 

largest integral parts of 𝑥𝐵𝑖
 and 𝑦𝑖𝑗 respectively, while 𝜇𝐵𝑖

 and 𝜇𝑖𝑗 are the 

positive fractional parts of 𝑥𝐵𝑖
 and 𝑦𝑖𝑗 respectively. 

Now, 𝑥𝐵𝑖
≥ ⌈𝑥𝐵𝑖

⌉and 𝑦𝑖𝑗 ≥ ⌈𝑦𝑖𝑗⌉, 0 ≤ 𝜇𝐵𝑖
< 1, 0 ≤ 𝜇𝑖𝑗 < 1 then, by equation 

3.1, we have; 

𝑥𝑖 = ⌈𝑥𝐵𝑖
⌉ + 𝜇𝐵𝑖

− ∑ (⌈𝑦𝑖𝑗⌉ + 𝜇𝑖𝑗)𝑥𝑗     ∀𝑖 = 1, 2,   ⋯ , 𝑛 

𝑛

𝑗=𝑚+1

 

𝜇𝐵𝑖
− ∑ 𝜇𝑖𝑗𝑥𝑗 = 𝑥𝑖 − ⌈𝑥𝐵𝑖

⌉ + ∑ ⌈𝑦𝑖𝑗⌉𝑥𝑗 ,

𝑛

𝑗=𝑚+1

∀𝑖

𝑛

𝑗=𝑚+1

= 1, 2,   ⋯ , 𝑛                 3.2  

Thus, if 𝑥𝑖,   ∀𝑖 = 1, 2,   ⋯ , 𝑛 and 𝑥𝑗 ,   ∀𝑗 = 𝑚 + 1, ⋯ , 𝑛 are all integers then, 

𝑥𝑖 − ⌈𝑥𝐵𝑖
⌉ + ∑ ⌈𝑦𝑖𝑗⌉𝑥𝑗 ,

𝑛

𝑗=𝑚+1

∀𝑖 = 1, 2,   ⋯ , 𝑛 , thus, 
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𝜇𝐵𝑖
− ∑ 𝜇𝑖𝑗𝑥𝑗 , ∀𝑖 = 1, 2,   ⋯ , 𝑛, is an integer

𝑛

𝑗=𝑚+1

 

It follows that;  

∑ 𝜇𝑖𝑗𝑥𝑗 , ∀𝑖 = 1, 2,   ⋯ , 𝑛, is positive, therefore,

𝑛

𝑗=𝑚+1

 

𝜇𝐵𝑖
− ∑ 𝜇𝑖𝑗𝑥𝑗 ≤ 𝜇𝐵𝑖

< 1, ∀𝑖 = 1, 2,   ⋯ , 𝑛, 𝑡ℎ𝑎𝑡 𝑖𝑠,

𝑛

𝑗=𝑚+1

 

𝜇𝐵𝑖
− ∑ 𝜇𝑖𝑗𝑥𝑗 , ∀𝑖 = 1, 2,   ⋯ , 𝑛, is an integer less than one.

𝑛

𝑗=𝑚+1

 

Thus, it is either a zero or a negative integer. Hence,  

𝜇𝐵𝑖
− ∑ 𝜇𝑖𝑗𝑥𝑗 ≤ 0,     or  

𝑛

𝑗=𝑚+1

− ∑ 𝜇𝑖𝑗𝑥𝑗  ≤ −𝜇𝐵𝑖
  ∀𝑖 = 1, 2,   ⋯ , 𝑛,

𝑛

𝑗=𝑚+1

        3.3 

Equation 3.3 is called the Gomory constraint. Applying the non-negative 

slack variable, we have;  

− ∑ 𝜇𝑖𝑗𝑥𝑗  + 𝑥𝐺1 ≤ −𝜇𝐵𝑖
   ∀𝑖

𝑛

𝑗=𝑚+1

= 1, 2,   ⋯ , 𝑛,                                               3.4   

Adding equation 3.4, Table 3.1, we have; Table: 3.2 
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Since −𝜇𝐵𝑖
 is negative, the optimal solution derived from Table: 3.2 is not 

feasible. Therefore, we apply the dual simplex algorithm to obtain the optimal 

feasible solution. If all the variables in the resulting solution are integers, the 

process ends. Otherwise, we construct the second Gomory constraint from the 

resulting Simplex-Gomory table (Table: 3.2), introduce it into the next 

iterative table, and solve it using the dual simplex algorithm. This process is 

repeated until an integer solution is obtained. 

IV. NUMERICAL APPLICATION  

Application 4.1 

The Innoson Vehicle manufacturing plant in Umudim Nnewi, Anambra state, 

has a factory that produces cars and buses, as well as a showroom for selling 

these vehicles. The company earns a profit of $3,000.00 and $12,000.00 per 

car and bus, respectively. The company has two subdirectors, C and B, who 

can each work a maximum of 7 hours and 15 hours per day, respectively. 

Both subdirectors are responsible for supervising both cars and buses. 

Subdirector C spends 2 hours supervising a car and 4 hours supervising a bus, 

while subdirector B spends 5 hours supervising a car and 3 hours supervising 

a bus. To maximize daily profit, how many cars and buses should be 

supervised? (a) Formulate and solve this problem as an LP problem. (b) If the 

optimal solution is not integer-valued, use the technique in equation 3.1 to 

derive the optimal integer solution. 

Mathematical formulation  

Let 𝑥1and 𝑥2  be the number of cars and buses to be supervised daily, 

respectively. Thus, the mathematical model of the LP problem is stated as:  

Maximize 𝑍 =  $3000𝑥1  +  $12000𝑥2 

 Subject to the time constraints   

supervisor C ∶  2𝑥1  +  4𝑥2  ≤  7  

supervisor B ∶  5𝑥1  +  3𝑥2  ≤  15   

𝑥1 , 𝑥2   ≥  0 and are integers. 

Solution  

(a) Adding slack variable 𝑥3 and 𝑥4, the given LP problem is follows: 

Maximize 𝑍 =  3𝑥1  +  12𝑥2 + 0𝑥3  +  0𝑥4 

Subject to the time constraints 
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2𝑥1  +  4𝑥2 + 𝑥3  +  0𝑥4 =  7 

5𝑥1  +  3𝑥2 + 0𝑥3  +  𝑥4 =  15 

 

Now, using the Simplex method we have; Table: 4.1 

 

The non-integer optimal solution shown in Table: 4.2 is 𝑥1 = 0;  𝑥2 =
7

4
;  𝑥4 =  0 𝑎𝑛𝑑 𝑀𝑎𝑥𝑍 =  21,000 

b) To obtain the integer-valued solution, we proceed to construct Gomory’s 

Fractional cut, with the help of 𝑥2 - row (because it has largest fraction 

value) s follows.  

1

2
𝑥1  +  𝑥2 +

1

4
𝑥3  +  0𝑥4 =

7

4
 

(
1

2
+ 0) 𝑥1  +  (1 + 0)𝑥2 + (

1

4
+ 0) 𝑥3  +  0𝑥4 = (

3

4
+ 1) 

3

4
+ (1 − 𝑥2) −

1

2
𝑥1 −  

1

4
𝑥3 = 0 

3

4
≤

1

2
𝑥1 +  

1

4
𝑥3 

On adding Gomory Slack variable 𝑥𝑔1
, the required Gomory’s fractional cut 

becomes: 

3

4
=

1

2
𝑥1 +  

1

4
𝑥3 + 𝑥𝑔1

 

Now, by introducing the new constraint equation to the bottom of the optimal 

simplex Table-4.2, we have a new infeasible Simplex Gomory iterative table: 

4.2.1. 
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The outgoing vector is 𝑌𝑔1
 from the basis and entering vector 𝑌1 into the basis 

by applying the dual simplex method. The new solution is shown in  

 

Still, the optimal solution shown in Table: 4.2.2 is non-integer. Therefore, by 

adding one more fractional cut, with the help of the𝑌1-row, we have:  

3

2
= 𝑥1 −

1

2
𝑥3 − 

1

4
𝑥3 − 2𝑥𝑔1

 

(
1

2
+ 1) = (1 + 0)𝑥1 − (

1

2
+ 0) 𝑥3 − (−2 + 0)𝑥𝑔1

 

1

2
+ (1 − 𝑥1 + 2𝑥𝑔1

) =
1

2
𝑥3 

1

2
 ≤

1

2
𝑥3 

On adding Gomory slack variable 𝑌𝑔2
, the required Gomory’s fractional cut 

becomes: 

−
1

2
= −

1

2
𝑥3 + 2𝑥𝑔2

 

Adding this cut to the optimal simplex table-4.2.3, the new table so obtained 

is shown in table: 4.2.3 
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The outgoing vector 𝑌𝑔2
 from the basis and entering vector is 𝑌3 into the basis 

by applying the dual simplex method. The new solution is shown in 

table:4.2.4. 

Table: 4.2.4 

Therefore, since all the variables in Table: 4.2.4 have integer values and all 

Δ𝐽 ≤  0,  the solution is an integer optimal solution. It is recommended that 

the company should produce one Car and one Bus each day to yield Max 

(profit)𝑍 =  $15,000. Similarly, we can solve different examples with the 

help of the algorithm of Gomory’s mixed integer cutting plane and zero-one 

integer programming. 

Conclusion 

The evolution of linear programming (LP) optimization techniques illustrates 

the dynamic relationship between theoretical innovation and practical 

application. From its mathematical foundations to modern computational 

advancements, LP has become an essential tool for solving optimization 

problems. The development of efficient algorithms, such as the Simplex and 

interior-point methods, has played a crucial role in making LP both widely 

accessible and impactful. The advancement of Simplex-based approaches for 

linear integer programming highlights the synergistic connection between 

mathematical theory and practical application. From its origins in linear 

programming to its pivotal role in solving discrete optimization problems, the 

Simplex method has proven to be remarkably adaptable and enduringly 

relevant. The continuous evolution of computational techniques ensures that 
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the legacy of the Simplex method will continue to shape the field of 

optimization, enabling solutions to increasingly complex challenges in 

science, industry, and beyond. 
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