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Abstract

This paper presents a hybrid optimization framework for solving linear
integer programming (LIP) problems using Simplex-based techniques.
Building on the classical Simplex method and integrating it with branch-and-
bound, cutting-plane, and heuristic approaches, the proposed methodology
addresses the complexity of integer-constrained decision-making in areas
such as scheduling, logistics, and resource allocation. A brief historical
overview of the Simplex method and its evolution into LIP solutions is
provided, along with theoretical insights into feasibility, constraint
preservation, and solution structure. The effectiveness of the hybrid approach
is demonstrated through a real-world application at Innoson Vehicle
Manufacturing, showcasing how the integrated method improves solution
accuracy and computational efficiency in practical settings. This study
contributes to the broader field of optimization by offering a unified,
adaptable approach for modeling and solving complex integer programming
problems.

Keywords: Simplex method, Linear Integer Programming (LIP), Branch-and-
bound, Resource allocation

I. INTRODUCTION

Optimization techniques have become essential tools in mathematics,
economics, operations research, and computer science. Among these, linear
programming (LP) has played a foundational role in modeling and solving a
wide array of real-world challenges—from resource allocation to logistics.
The introduction of the Simplex method by George Dantzig in 1947 marked a
significant milestone, offering an efficient algorithm for solving LP problems
by navigating the vertices of the feasible region (Dantzig, 1947).

However, many practical problems—such as workforce scheduling,
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transportation planning, and network design—require decision variables to
take on integer values, which standard LP techniques cannot directly handle.
This limitation led to the development of Linear Integer Programming (LIP),
an extension of LP that combines continuous optimization methods with
discrete variable constraints (Wolsey, 1998).

Despite the theoretical appeal of LIP, solving such problems efficiently
remains a challenge due to the combinatorial explosion of possible integer
solutions. To overcome this, hybrid optimization techniques have emerged,
integrating the Simplex algorithm with methods like branch-and-bound,
cutting planes, and heuristic strategies to handle integrality constraints more
effectively (LaisinandEdike, 2025a). These hybrid approaches maintain the
mathematical rigor of LP while enabling robust, efficient solutions to discrete
decision-making problems in logistics, energy systems, and scheduling.

The historical roots of LP date back to the 19th century, with Joseph Fourier's
development of the Fourier-Motzkin elimination method for solving systems
of inequalities (Fourier, 1824). Later, Janos Farkas introduced Farkas' Lemma
(1902), which enhanced theoretical understanding of feasibility in linear
systems. These foundational contributions culminated in Dantzig's Simplex
Method (1947), which remains widely used in both academia and industry.

The adaptation of the Simplex method for LIP, however, introduced new
difficulties. Integer constraints disrupted the convex geometry exploited by
Simplex, prompting researchers to explore hybrid strategies. Techniques like
branch-and-bound (Land & Doig, 1960), cutting-plane methods (Gomory,
1958), and heuristic-guided iterations have since been combined with the
Simplex framework to tackle LIP more effectively.

Such hybrid Simplex-based LIP models have gained traction in recent years
across diverse sectors:

e Supply Chain Management: Hybrid optimization is used to manage
inventory, production, and transportation decisions involving integer
constraints (Chauhan & Dey, 2022).

e Transportation and Logistics: Integer-constrained problems such as
vehicle routing and delivery scheduling benefit from integrated
Simplex and branch-and-bound methods (Lopez et al., 2021).

e Scheduling: In job-shop and workforce scheduling, Simplex-based
models are hybridized with metaheuristics to enhance feasibility and
reduce solution time (Zhao & Kim, 2020).

o Energy Distribution: Hybrid models optimize decisions in smart grids
and renewable energy networks, where binary and integer variables
23



Global Online Journal of Academic Research (GOJAR), Vol. 4, No. 2, August 2025

are critical (Cui et al., 2023).

Furthermore, recent computational studies have demonstrated the advantages
of hybrid optimization frameworks in terms of both convergence speed and
solution stability. For example, Laisin and Adigwe (2025b) showed that
hybrid methods—particularly those integrating gradient-based algorithms
with integer constraints—consistently outperform classical techniques in
complex solution spaces. Additionally, Laisin and Edike (2025c), in their
paper titled "Characterizing Boundedness and Solution Size in Rational
Linear Programming and Polyhedral Optimization,” established that all
feasible solutions within such rational linear systems are bounded and exhibit
guaranteed convergence properties.

This paper builds upon these developments by presenting a modeling
framework and solution methodology for solving Integer-Constrained Linear
Programs using Simplex-based hybrid optimization. The approach is
demonstrated across multiple real-world applications, reinforcing its utility as
a unified and adaptable solution paradigm.

Il. PRELIMINARIES AND METHODS

Linear Integer Programming (LIP) involves  solving combinatorial
constrained optimization problems with integer variables, where both the
objective function and constraints are linear relationships. This mathematical
framework can be represented as follows:

n
Maximize Z = Z CiXi
i=1
n
subject to: Ax = Z ajjx; < bj,j=12,..,m,
i=1

X; € Zn,

Where the solution x; € Z™ is a vector of n integer variables: x; =
(x1,%5,...,x,) T and the data are rational and are given by the m x n matrix
A, the 1 X n matrix ¢, and the m x 1 matrix b. This formulation also includes
equality constraints as each equality constraint can be represented using two
inequality constraints like a;;x; < b. There are two types of Integer
Programming Problems: An Integer Programming Problem (IPP) involves
finding optimal solutions to mathematical models where some or all decision
variables are constrained to integer values. When all variables are restricted to

non-negative integers, it is called the Pure Integer Programming Problem
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or All Integer Programming Problem (All 1PP). Conversely, if only some
variables are constrained to be integers while others can take any non-
negative values, it is termed a Mixed Integer Programming Problem
(Mixed IPP).

Integer programming is a fundamental tool in optimization, enabling the
modeling of complex decision-making processes in various fields such as
operations research, economics, and engineering. The distinction between
pure and mixed integer programming allows for flexibility in modeling
scenarios where certain decisions are discrete (e.g., the number of machines
to purchase) while others are continuous (e.g., the amount of raw material to
use).

Recent advancements focus on improving algorithms for solving these
problems efficiently. For example, Del Pia (2023) explores the complexity of
mixed integer convex quadratic programming, providing insights into
optimization algorithms.

Additionally, the development of algorithms utilizing Graver bases have
enhanced solving nonlinear integer programming problems in variable
dimensions. This approach has been particularly effective in addressing
block-structured and n-fold integer programming challenges, contributing to
the broader theory of sparse and bounded tree-depth integer programming.

These advancements have significant implications for practical applications,
enabling more efficient and effective solutions to complex optimization
problems across various industries.

Definitions

e General Description: Simplex Linear Integer Programming involves
solving optimization problems where the objective function and
constraints are linear, and the decision variables are restricted to
integer values, using the Simplex algorithm as the core solution
technique (Winston, 2004; Glover et al., 2021).

e Mathematical Perspective:The Simplex Method is an iterative
algorithm for solving linear programming problems. It operates on a
feasible region defined by linear inequalities and progresses toward an
optimal solution by moving along the edges of this region
(Nemhauser, & Wolsey, 1999; Dantzig, 2021).

e Algorithmic Focus: Simplex Linear Integer Programming applies the
Simplex algorithm as a basis to navigate feasible regions of linear
programming, extended to accommodate integer variable constraints
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(Bertsimas, &Tsitsiklis, 1997;Klein, 2018).

Practical Context:This class of optimization problems employs the
Simplex method to optimize linear objective functions over decision
variables restricted to integer values. These models are widely utilized
in scheduling, resource allocation, and logistics, where decisions often
involve discrete quantities (Schrijver, 1986; Schrijver, 2017).
However, Laisin et al. (2024), in their study titled “The Construction
of Rational Polyhedra on an n x n Board with Some Applications to
Integral Polyhedral Theory,” demonstrated that certain polyhedra—
particularly those analyzed graphically—necessitate integer-valued
solutions to accurately define feasible regions. Their findings
underscore the importance of incorporating integer constraints when
modeling real-world problems where fractional solutions are not
practical or permissible.

Hybrid Approach: Simplex Linear Integer Programming integrates
the principles of linear programming and combinatorial optimization
to solve integer-restricted problems, balancing computational
efficiency and precision. (Hillier, & Lieberman, 2020; Klose &Drexl,
2022).

Linear Integer Programming (LIP): A mathematical optimization
problem where the objective function is linear, and the decision
variables are required to take integer values. These problems are
commonly subject to linear constraints, including bounds and
relationships between the variables (Vanderbei, 2022).

Branch-and-Bound: A general algorithm for solving integer and
combinatorial optimization problems. It systematically explores the
solution space by dividing it into subproblems and eliminating
suboptimal solutions using bounds (Land & Doig, 2021).

Feasibility and Optimality Conditions: In linear programming,
feasibility refers to whether there exists a set of values for the decision
variables that satisfies all the constraints. A solution is feasible if it
lies within the feasible region, which is the set of all points that satisfy
the constraints. (Dantzig, 1947).

The Cutting-Plane method is particularly useful in situations where the
solution space is continuous but needs to be restricted to integer points. The
cutting-plane algorithm, often combined with other techniques like branch-
and-bound, is used in large-scale ILP problems, especially when dealing with
complex or non-convex feasible regions (Balas, 2022).
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Duality in linear programming refers to the relationship between two
optimization problems: the primal problem and its dual. The primal problem
involves the direct optimization of an objective function subject to
constraints, while the dual problem involves the optimization of a related
objective function subject to dual constraints. The solutions to the primal and
dual problems are related by the duality theorem, which states that under
certain conditions, the optimal values of the primal and dual problems are
equal. Duality plays a crucial role in understanding the properties of
optimization problems, and it has important applications in sensitivity
analysis and the development of algorithms like interior-point methods
(Vanderbei, 2022).

The integration of the Simplex method with modern computational
advancements has expanded its utility. Hybrid algorithms, combining branch-
and-bound with cutting-plane techniques, harness the strengths of the
Simplex method while leveraging computational power to tackle increasingly
complex problems. Machine learning techniques have also been integrated
with LIP to predict better initial solutions, speeding up the optimization
process.

This paper successfully aimed to unify diverse requirement policies from
various domains into a cohesive general model, utilizing the Simplex linear
integer technique to ensure the optimal solution remains within the feasible
region. This approach demonstrates a significant step forward in creating a
unified framework while maintaining mathematical rigour.

I11. Results

3.1 Adding, Subtracting, Or Scaling: Let Z be the feasible solution set of
an Integer Programming Problem (I.P.P.), defined by a system of linear
constraints. If a new constraint is obtained by adding, subtracting, or scaling
any of the existing constraints by a non-zero scalar, then every solution in Z
satisfies the new constraint.

Proof:

Consider Z as the feasible solution set of an Integer Programming Problem
(I.P.P.), defined by a system of linear constraints:

Ax < b, x € Z"

where A is an m X n matrix of coefficients, b is a vector of size m, and x is
the vector of integer decision variables.

Assume a new constraint ¢’x < d is derived by manipulating the existing
constraints through addition, subtraction, or scaling. This implies that ¢ and
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d are obtained as linear combinations of rows of A and elements of b,
respectively. Specifically, the new constraint can be represented as:

¢’ = qal + Aal + -+ Apal,

d = Albl + Azbz + -+ ){,mbm

where 2;,1,,++, A,,, are scalars (not all zero), and a! are rows of A, with b;
being the corresponding elements of b.

We now assess the Feasibility of Z under Ax < b. By definition, each
solution x € Z satisfies:

aiT <b;fori=12,...m

Therefore, the feasible set Z consists of all x € Z™ that satisfies all these m
constraints.

The new constraint ¢Tx < d is derived from a valid linear combination of the
original constraints:

M(af < by),A(a < by), -, Am(afy < by)
Adding or subtracting these constraints results in:

/11(1’{ + Azag + b + Ama‘)’l';'L S }{'lbl + Azbz + b + ){,mbm

Which simplifies to:
c’x<d

Since this new inequality is a linear combination of the original constraints, it
is satisfied by any x that satisfies the original constraints.

Hence, everysolution x € Z satisfies all original constraints Ax < b. Because
the new constraint ¢’x < d is a consequence of these constraints, every x €
Z must also satisfy ¢"x < d.

Therefore, the introduction of ¢”x < d does not eliminates any solutions in Z
as the constraint is already satisfied by all x € Z. Therefore, the feasible set Z
remains unchanged.

We have shown that any new constraint derived by adding, subtracting, or
scaling the existing constraints by a non-zero scalar is satisfied by every
solution in Z. Hence, the theorem is proven. Q.E.D.
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3.2 Constraint Preservation in Integer Programming Problems:
Let Z be the feasible solution set of an Integer Programming Problem (1.P.P.),
defined by a system of linear constraints Ax < b, where A is an m X n
matrix, b is a vector of size m, and x € Z™. Suppose x* is a solution obtained
by the Simplex technique that includes fractional parts for one or more
variables. Then:

a. The solution x* satisfies all constraints in the original system Ax < b.
b. Any new constraint ¢Tx < d derived by:

o Adding or subtracting two or more constraints from the
original system, or

o Scaling any constraint by a non-zero scalar, is also satisfied by
x* and all feasible integer solutions in Z

Construction

To proceed, we first introduce two key concepts as follows: Suppose p = a%

Let [p] =largest integral part of number a, i.e. the greatest integer less than a,
and u =positive fractional part of number a,

thus, we have p = [p] + u, clearly 0 < u < 1, for example

1

(i) przaéthen [p]zaanduzgsothata%=a+b. Vb eZ and

(i) 1fp=—asthen[p] =—(a+1)andu == sothat

1 1
—agz—(a+g)2—(a+1), YabeZt

Now, we proceed with the construction of the Gomory constraint as follows.

Let the optimal solution of the maximization Linear Programming Problem
(L.P.P.), ignoring the integer requirements of the variables, be expressed in
the following table: 3.1.

In this table: 3.1, the basic variables xg ,xg,,..,xp, are arranged in a
convenient order for clarity.
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B Gy Xp Y Vi V¥ Ypg e Wy
Y, cp, Xp, 1 0 - 0 - 0 Yim+1 - Yin
Y, ¢g, x?’z 0 1 v 0 - 0 Yomer - Yon
Y, B Cp; 0 o -1 -« 0 Yi,m+1 e Y
Y Cg, | ¥Bm 0 0 0 1 Ypmer = Yo
Xy Xp, Xp, Xp; Xg, 0 0
Table: 3.1

Let the ith basic variable xg, be a non-integer
Note that 1 < i < m. Therefore, using ith row of Table: 3.1, we have
xp, = 0.1 + 0.2 + -+ 0.200 + Vime1Xmer + 0+ YinXn

n
=x; + Z YijXj

j=m+1

n
X =xBi_ z yUX] Vi = 1,2, e, n 3.1

j=m+1

Let xp, = [xp,| + s, and y;; = [yi;] + wi; where [xp,] and [y;;] are the
largest integral parts of xp, and y;; respectively, while ug, and y;; are the
positive fractional parts of xp, and y;; respectively.

Now, xp, > [xp,|and y;; = [y;;], 0 < up, < 1,0 < p;; < 1 then, by equation
3.1, we have;

n
x; = [xg,] + g, — Z ([yijl +wij)x; vi=12, - ,n

j=m+1
n n
Hp; — Z uijxy = % = [xg,] + Z [yl vi
j=m+1 j=m+1
=1,2, -,n 3.2

Thus, ifx;, Vi=1,2, --,nandx;, Vj=m+1,---,nareall integers then,

n
Xi — [XB,-] + Z [}’ij]xj,Vi =1,2, --,n,thus,

j=m+1
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n
Up; — Z UijXj, Vi=1,2, ---,n,isaninteger

j=m+1

It follows that;

Z WijX;, vi=1,2, --,n, is positive, therefore,

ps— ) myy Sps <1 Vi=12,

--’n,

that is,

Up;, — Z HijXj, vVi=1,2, --,n, is an integer less than one.

Thus, it is either a zero or a negative

n
Up;, — z pijxj <0, or

j=m+1

integer.  Hence,

n

j=m+1

Equation 3.3 is called the Gomory constraint. Applying the non-negative

slack variable, we have;

n
- Z WijXj +Xg1 < —pp, Vi

j=m+1
=1,2, N, 3.4
Adding equation 3.4, Table 3.1, we have; Table: 3.2
B Cp Xp Y i - YV Yin+1 Yn Xe1
Y1 cp, xB, 1 0 0 YimerYin 0
Y, g, B, 0 1 0 Yomer Yan
Y; Cl'i'i Cp; 0 0 1 Yime1 Yin 0
Yo Ca, Xp,, 0 o 70 Ymmir Yo O
YGl 0 _uBi 0 0 0 Ili,m+1 Hin 1
xf xBl xBZ e xBi me 0 b 0 _‘uBi
Table: 3.2
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Since —up, is negative, the optimal solution derived from Table: 3.2 is not
feasible. Therefore, we apply the dual simplex algorithm to obtain the optimal
feasible solution. If all the variables in the resulting solution are integers, the
process ends. Otherwise, we construct the second Gomory constraint from the
resulting Simplex-Gomory table (Table: 3.2), introduce it into the next
iterative table, and solve it using the dual simplex algorithm. This process is
repeated until an integer solution is obtained.

IV.NUMERICAL APPLICATION
Application 4.1

The Innoson Vehicle manufacturing plant in Umudim Nnewi, Anambra state,
has a factory that produces cars and buses, as well as a showroom for selling
these vehicles. The company earns a profit of $3,000.00 and $12,000.00 per
car and bus, respectively. The company has two subdirectors, C and B, who
can each work a maximum of 7 hours and 15 hours per day, respectively.
Both subdirectors are responsible for supervising both cars and buses.
Subdirector C spends 2 hours supervising a car and 4 hours supervising a bus,
while subdirector B spends 5 hours supervising a car and 3 hours supervising
a bus. To maximize daily profit, how many cars and buses should be
supervised? (a) Formulate and solve this problem as an LP problem. (b) If the
optimal solution is not integer-valued, use the technique in equation 3.1 to
derive the optimal integer solution.

Mathematical formulation

Let x;and x, be the number of cars and buses to be supervised daily,
respectively. Thus, the mathematical model of the LP problem is stated as:

Maximize Z = $3000x; + $12000x,

Subject to the time constraints

supervisor C: 2x; + 4x, < 7

supervisor B: 5x; + 3x, < 15

X1,X%, = 0and are integers.
Solution
(a) Adding slack variable x5 and x,, the given LP problem is follows:
Maximize Z = 3x; + 12x, + 0x3 + Ox,

Subject to the time constraints
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le + 4xZ+X3 + OX4_: 7

le + 3x2+0x3 + X4_: 15

B CB XB Mln
Y Y, Yz Y, | Ratio
Y; 0 7 2 4 1 0 77,5
Y, 0 |15 5 3 0 1 ‘é
A 13000 12$00 0 0
Table: 4.1

Now, using the Simplex method we have; Table: 4.1

B Cy | X, Y, Y, Y, Y,

Y, 12000 [1.75| 05 1 05  0.25

Y, 0 |975|] 35 o0 -—075 1
A, [ —3000 0 —3000 0

Table: 4.2 (Optimal solution is not integer-valued)

The non-integer optimal solution shown in Table: 4.2 is x; =0; x, =
25 x4 = 0and MaxZ = 21,000

b) To obtain the integer-valued solution, we proceed to construct Gomory’s
Fractional cut, with the help of x, - row (because it has largest fraction
value) s follows.

1 1
Exl + Xy +Zx3 + 0x4 =Z
1 1 3
(—+0>x1 + (1+0)x2+(_+0)x3 + 0x4=(_+1>
2 4 4
1
Z+(1—x2)—§x1— Zx3=0
3 1 1
Zsle‘l' ZX3

On adding Gomory Slack variable x4 , the required Gomory’s fractional cut
becomes:

3 1 1
_:_x1+_

4 > 4x3+xg1

Now, by introducing the new constraint equation to the bottom of the optimal
simplex Table-4.2, we have a new infeasible Simplex Gomory iterative table:

4.2.1.
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B Cp | Xg Y, Y, Y, Y, Y,

Y, 12000| 175 | 05 1 025 0 0

Y, 0 9(.)7755 35 0o -075 1 o0

Y, 0 —0. 0.5 0 —-0.25 o 1
Min. | 6000 0 3000 0 0
Ratio

Iteration Table: 4.2.1:

The outgoing vector is Y, from the basis and entering vector Y; into the basis
by applying the dual simplex method. The new solution is shown in

B Cy X Vi Y, Y3 Y, Yy,
Yo 12000 1 0 1 0 0 1
Y, 0 4.5 0 0 -25 1 7
Y, 3000 |0.75 1 0 0.5 0 2
A, | —3000 0 1500 0 —6000

Iteration Table: 4.2.2;

Still, the optimal solution shown in Table: 4.2.2 is non-integer. Therefore, by
adding one more fractional cut, with the help of theY; -row, we have:

1 1
X1 —Ex3 - Zx3 — 2xg,

(%+ 1) =(1+0)x; — (%+ 0) x3 = (=2 +0)xy,

1 1
5+ (1—2x; +2x,,) =%

N =
N =

< -X3

On adding Gomory slack variable Y, , the required Gomory’s fractional cut
becomes:

1

5= 5% + 2x4,

Adding this cut to the optimal simplex table-4.2.3, the new table so obtained
is shown in table: 4.2.3
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B Cy Xg Y Y, Y3 Y, 5. Vg,
Y, 12000 1 0 1 0 0 1 0
Y, 0 4.5 0 0 —2.5 1 7 0
v o |-05| 0 0 -—05 0 0 1-
9z
A] —3000 0 —1500 0 —6000 0
Min. | g o 100 45 0
Ratio T

Iteration Table: 4.2.3

The outgoing vector Y, from the basis and entering vector is Y; into the basis
by applying the dual simplex method. The new solution is shown in
table:4.2.4.

Y, 12000 1 0 1 0 0 0 0

Y, o 7 0o 0 o 1 7 -5

v, 3000 |1 1 0 o 0o 2 1

Y 0 1 0 0 1 0 0 -2
A, 0 0 0 0 —6000 —3000

Table: 4.2.4

Therefore, since all the variables in Table: 4.2.4 have integer values and all
A; < 0, the solution is an integer optimal solution. It is recommended that
the company should produce one Car and one Bus each day to yield Max
(profit)Z = $15,000. Similarly, we can solve different examples with the
help of the algorithm of Gomory’s mixed integer cutting plane and zero-one
integer programming.

Conclusion

The evolution of linear programming (LP) optimization techniques illustrates
the dynamic relationship between theoretical innovation and practical
application. From its mathematical foundations to modern computational
advancements, LP has become an essential tool for solving optimization
problems. The development of efficient algorithms, such as the Simplex and
interior-point methods, has played a crucial role in making LP both widely
accessible and impactful. The advancement of Simplex-based approaches for
linear integer programming highlights the synergistic connection between
mathematical theory and practical application. From its origins in linear
programming to its pivotal role in solving discrete optimization problems, the
Simplex method has proven to be remarkably adaptable and enduringly
relevant. The continuous evolution of computational techniques ensures that
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the legacy of the Simplex method will continue to shape the field of
optimization, enabling solutions to increasingly complex challenges in
science, industry, and beyond.
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