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Abstract

This study presents the development of an intelligent autonomous mobile robot
system for object detection and classification using the combination of Faster
Regional-Convolutional Neural Network (R-CNN) with a Double Deep Q-Learning
Network (DDQN) for decision-making in a dynamic environment. The system
adopts the Open ImageV5 data-set for testing and training, improving model
performance through the use of strong preprocessing and augmentation methods.
While the DDQN allows for optimum path planning and manoeuvring decisions in
stochastic mobility circumstances, the faster R-CNN guarantees excellent detection
accuracy by improving object categorisation and bounding box predictions. The
suggested concept was put into practice and assessed in a gaming environment that
mimics actual circumstances. The results presents a consistent performance in
braking and stopping distances, a processing speed of 5-10 frames per second, and
good detection accuracy (90-95%). The system's generalisability and dependability
were confirmed using a 5-fold cross-validation approach, which also confirmed that
it is appropriate for real-time applications. With applications in robotic systems,
security, and environmental monitoring, this study demonstrates the possibility of
combining deep learning with reinforcement learning for autonomous navigation.

Keywords: Autonomous Mobile Robot, Faster R-CNN, Double Deep Q-Learning
Network (DDQN), Object Detection, Path Planning, Reinforcement Learning

1. INTRODUCTION

U The basis for further sophisticated behaviours carried out by the artificial

agent (robot entities or software algorithms that can autonomously execute

orders and actions in real or simulated settings) is mobile robot navigation, or

perceptual recognition of the surroundings. In earlier conventional navigation

technologies, path-planning duties were accomplished by mobile robot
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navigation algorithms using data from external sensors (lasers, cameras,
radar, etc.). Numerous industrial applications have demonstrated the
widespread usage of this classic technology. The Global Navigation Satellite
System (GNSS) is one example of how it has also been very successful
(Gyagenda et al., 2022). However, the aforementioned technologies continue
to have serious drawbacks and are inapplicable; they cannot be used in
contexts that are complicated, unfamiliar, and constantly changing. The map-
based navigation method requires the environment to be surveyed and
mapped beforehand, which takes a lot of effort and raises the bar for
environment modelling accuracy. However, classical navigation has
significant challenges in accurately simulating complex and dynamic settings.
Similarly, the resilience of the navigation algorithm is also impacted by the
accumulation of noise during the modelling process and the lack of sensor
precision (Li, 2023).

In order to overcome the aforementioned challenge, several researchers are
dedicated to integrating Simultaneous Localisation and Mapping (SLAM)
with conventional navigation systems in order to generate unfamiliar and
intricate settings (Durrant-Whyte and Bailey, 2006). The mobile robot will
develop an efficient route to reach its destination and finish the navigation job
based on the positioning algorithm that anchors its real-time location.

A potential substitute strategy for navigating dynamic, uncertain, and partially
visible situations is provided by learning techniques like Deep Reinforcement
Learning (DRL). DRL is a machine learning method where an agent learns a
behavioral strategy that maximises the numerical reward it receives from its
surroundings through trial and error. In order to improve its policy, the agent
"learns™ through a certain number of training events in which it engages with
its surroundings. In Atari games and the game of Go, DRL algorithms have
demonstrated remarkable ability in learning Markov decision processes
(Mnih et al., 2015, 2016; Silver et al., 2016, 2017).

The autonomous navigation problem has recently been referred to as a
Markov Decision Process (MDP) using DRL. Using Deep Dyna-Q learning,
an agent represented by a point in 2D space was simulated for ER evacuation
(Zhang et al., 2021). Dyna-Q is a DRL method that combines model-free Q-
Learning with model-based reinforcement learning to learn the optimal action
value function (Sutton and Barto, 2018). The authors trained a Deep Q-
Network (DQN) to predict the value of moving in one of eight different
directions based on the agent's location inside the evacuation scenario. The
algorithm was able to navigate from any starting point to the destination in a
time-efficient manner in obstacle-containing situations with favourable and
aversion zones. Robotic navigation tasks in static environments where the
robot's exact location is always known are a good fit for this learning
8
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scenario. However, for a robotic system, it is frequently unreasonable to
assume a static environment, accurate localisation, and complete knowledge
of obstacle configurations (Blum et al., 2022).

In this study, the Reinforcement Learning method for the agent's environment
exploration is Double Deep Q-Learning (DDQL) (Sutton and Barto, 2011).
The Double Q-Learning addresses the issue of overestimation of the Q-value
in basic Q-Learning, whilst the Q-Learning algorithm thrives on determining
appropriate measures to decide in a given scenario (Van-Hasselt et al., 2016).
The activities that are tried and the states that are investigated determine how
accurate the Q-values are. As a result, at the start of the training, an agent
lacks the knowledge they need to decide what to do. Selecting the optimal
course of action based on the largest Q-value may be noisy and result in false
positives. In order to isolate action selection from target Q-value production,
the Double Deep Q-Learning Network employs two distinct networks,
namely the Deep Q Network and the Target Network. As a result, DDQN
considerably reduces the overestimation of Q-values, which helps an agent
learn steadily through faster training and demonstrates the superiority of this
approach over alternative learning algorithms (Bin-Issa et al., 2021).
Therefore, by selecting the largest Q-value while exploring the same
environment, DDQN demonstrates to be appropriate for an autonomous agent
to make judgements for optimum traversal. The epsilon greedy strategy is the
method by which the agent continuously establishes the greatest Q-value for
navigation (Sutton and Barto, 2011).

While navigating, this activity also include identifying and categorising
impediments. Through the sensor, it gathers information from barriers on
rocky, uneven, and lumpy terrain. To put the aforementioned suggestion into
practice, we primarily employed a visual sensor. The agent receives the
sensory input and makes a choice depending on the conditions it has been
given. The prototype mainly uses Faster R-CNN (Erhan et al., 2014) as the
mobile robot attempts to detect and identify things while travelling. At the
moment, Faster R-CNN is a notable object classification algorithm. To find
region suggestions, the R-CNN and Fast R-CNN algorithms use a selective
search technique. Faster R-CNN (Ren et al., 2016) is superior than its
predecessors since it does not use the selective search technique and instead
learns the region proposals. It is faster and more appropriate for real-time
object detection as it uses a convolutional network for both region suggestion
and object detection.

2. METHODOLOGY

Deep Reinforcement Learning has been used in a number of highway
decision-making strategies (Liao et al., 2020; Nageshrao et al., 2019); in this
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study, the deep Q-Learning approach is combined with the Faster R-CNN
method to enable an autonomous agent to detect and steer clear of obstacles
while travelling. The fusion of these two techniques for autonomous
manoeuvre combines the advantages of these two approaches in autonomous
mobile robot navigation, even though the deep Q-Learning and Faster R-CNN
algorithms have shown success for autonomous mobility strategy and object
classification, respectively. The suggested reinforcement learning-based
autonomous mobile robot concept is depicted in Figure 1. In order for an
autonomous mobile robot to make manoeuvring decisions while categorising
and avoiding objects and obstacles along its path, the suggested model
combines the Double Deep Q-Learning Network (DDQN) and Faster R-
CNN. A gaming environment that closely resembles the real-world situation
is used to test the proposed approach.
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Figure 1: Architecture of the Proposed System
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2.1 Data Acquisition

Experiments are carried out using a massive data collection called Open
Image V5 (Kuznetsova et al., 2020). It is a free index that is created by
Google. It has 600 box-able object types and is enhanced with clear visuals.
Bounding boxes, visual relationships, object segmentation, complete
validation (40,520 images), and test sets are all included in the 1,732,042
training photos. Our Object Classifier does not, however, require all 600
classes. Using "OIDv4_ToolKit," a number of unique classes such as people,
shoes, tables, chairs, walls, etc. are distinguished from these 600 classes. Our
model is trained using 8335 extracted photos, with at least 1000 images in
each class.A total of 2360 photographs are taken from the data set for testing,
with at least 300 images in each class. These photos' labels are then compiled
into a. XML file.

2.2 Data Preprocessing

As seen in Figure 2, eight vision sensors, all of which are indicated in blue,
collect the pictures of the environment. The model will not be ready with the
sky and the front sections of the mobile robot because the output images from
vision sensors are altered. Those images are resized to 160 x 320 pixels (3
YUV channels) in accordance with the Google Colab concept. These images
are standardised, with 1.0 subtracted from the picture information that was
isolated by 127.5. This is to preserve congestion and improve the
performance of slopes, as stated in the Model Scheme section.

Forward Direction

Left Direction
Right Direction

Backward Direction
Figure 2: Image of the Mobile Robot with vision sensors
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2.3 Faster R-CNN for Object Classification

In a unique manner, the R-CNN applies a neural classifier to a distantly
featured input image by trimming its calculated box proposition. It is more
expensive than other methods since it necessitates a large number of crops,
which results in overlap calculations. Nevertheless, this issue can be reduced
by using Fast R-CNN. Fast R-CNN smoothes the highlighting extraction
process, cuts the image from a middle layer, and feeds the entire image to a
feature extractor. R-CNN and Fast R-CNN formerly needed an external
proposal generator. The neural network can now perform the same task with
more efficiency. It is typical for the image to include boxes that beat to one
another; these are referred to as "anchors.” To keep an outline, scales and
perspective proportions are necessary. A model is then created to predict each
anchor by (i) estimating a discrete class of unique anchors and (ii)
accumulating counterweight forecasts that are necessary to move the anchor
in order to put it in the ground truth bounding box.

Anchor identification has good effects on computation and accuracy. The
anchors from the data-set are now calculated by tiling boxes over the picture
according to different sizes and ratios, as opposed to utilising clustered
ground-truth boxes. The key benefit of employing a network is that the
prediction may be created using the picture's tiled indications and shared
parameters. As a conventional sliding window technique, it is notable (Ren et
al., 2016; Szegedy et al., 2014). The algorithm for the Faster R-CNN system
is presented in Algorithm 1 as:

Algorithm 1: Faster R-CNN Algorithm

. Start

ii. Input Image

iii. Image Processing (Resizing and Normalization of pixel values)
iv. Feature Extraction using pre-trained CNN

v. Region Proposal Network for Feature Mapping

vi. For each position in the feature map, generate multiple anchor boxes of
different scales and aspect ratios

vii. Classify each anchor box as foreground or background

viii. Adjustment of bounding box regression for anchor boxes for better
localization

iX. Region of Interest (ROI) pooling
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x. Use ROI to convert different-sized proposals into fixed sizes
xi. Object classification for assigning class label to the proposal

xii. Bounding box regression for further refinement of bounding box
coordinates

xiii. Eliminate duplicate and overlapping bounding boxes using Non-
Maximum Suppression (NMS)

xiv. Apply NMS for retainment of the most confident predictions for each
object

xv. Output classified objects with bounding box coordinates
Xvi. Stop

2.4 Distributional Agent for Autonomous Mobile Robot using Double
Deep Q-Learning Network (DDQN)

As an extension of his previous proposal, which relates to Deep Q Network
(DQN) (Hasselt, 2010), V. Hasselt developed the concept of DDQN (Van-
Hasselt et al., 2016). There are only few Q-Learning-based techniques, and
the DQN is one of them. These Q-Learning-based methods have
overestimation problems due to estimate mistakes. Overestimation leads to
overoptimistic fee evaluation and performance degradation. In any event, the
DDQN approach not only reduces the too optimistic revere assessment, but it
also provides preferable performance over DQN on a few simulated
accustoms. DDQN focusses on two Q-functions as a motivator and
disengages from excerpt and interpretation measurements. According to Bin-
Issa et al. (2021), the objective regard states of DQN and DDQN are:

yDQN =R + YAt+1ma'xQ(5t+1’At+1; 67) @

yPPON = R, + YQ(St41, argmazQyq,,, (St+1, A1 07); 67) 2
2.5 Markov Decision Process for Path Circulation

In this study, the secure path for self-governing mobility is expressed by the
Markov Decision Process. In every step, the actor chooses his own action,
and a prize is promptly awarded for that choice. As previously mentioned, the
Markov Decision Process (MDP) is chronicled by the tuple {S, P, A, R, y}. A
brief overview of MDP is provided below for easier comprehension (Bin-Issa
etal., 2021).

* s e S denotes the constrained state space that can hold a greyscale image
from the actor's vision sensors.
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« SxA xS —|[0,1]is the evolution behaviour defined by P(s Oks a).
« Alis aspecific reaction area that an actor can use.
* R(s, a): S x A — R specifies reward behaviour.

* The rebate element is described by y, where y — [0,1] for the postponed
incentive.

By using Deep Neural Networks, MDP states s e S may be used for high
dimensional perceptions (Alam et al.,, 2020). Eight vision sensors are
positioned at the front of Figure 2, which refers to the idea of all-
encompassing inclusiveness.

There are five specific actions for the autonomous mobility actor. Forward,
left, right, stop, and deceleration are all included in the definite reaction
region A. 5 kph is added to or subtracted from the running actor acceleration
for forward and deceleration. The range of the actor's acceleration is between
30 and 80 kph. In order to maintain a safe distance from the front mobile
robot, the actor automatically modifies the acceleration for mobile robots in a
certain separation. The "stop" action occurs instantly when the mobile robot
in front of us abruptly slows down or when another mobile robot abruptly
cuts in front of our representative mobile robot.

3. ARCHITECTURE OF THE PROPOSED MODEL

The actor's main goal, n(a]s, is to plan the discerning state, S, and take the
related action on the response region, A. In a scenario with stochastic
mobility, the entire activity will be driven. In any case, the model must meet
certain requirements in order to do this planning: (i) focus and capture large
characteristics from the images captured by three vision sensors; and (ii)
evaluate the climate's typical arbitraryness in order to select a certain activity.

To meet the primary requirement, the network must identify spatio-balanced
data recovered from vision sensors. This cycle is directed by using CNN. In
contrast to images, CNN is renowned for its ability to extract spatial
characteristics. Furthermore, two-dimensional three convolutional layers are
used to refine large spatial vision sensor images into ocular component
vectors. Furthermore, the DDQN technique may be used to satisfy the
following scenario. This method is used for stochastic mobility
circumstances. The totaFull creates a restorative circulation for each action.
complete linked layer with 0's help. The longing of quantiles, )i qifi(s, a),
can be used to evaluate the Q(s,a) choice. Figure 3 shows the flow diagram of
the suggested DDQN scheme for the suggested method. This suggested
network is constructed using Keras.
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Figure 3: The Architectural Flow Diagram of the Proposed System
3.1 Model Training

The gaming environment and the images gathered from the agent's cameras
have been used for agent training. The study's presumptions include the use
of recognised items for categorisation and sunshine for good eyesight. But for
diversity, we used the Python generator in conjunction with the associated
growth process to generate an infinite number of images. In addition to being
utilised indiscriminately, these photographs have had their properties altered
to provide the agent with a variety of situations, such as flipping images from
left to right or altering their splendour and shadows. The following are
arbitrary detail modifications (Bin-Issa et al., 2021).

 Arbitrarily select right, centre or left picture.

« Steering angle is adapted by +0.2 for left picture.

» Steering angle is adapted by —0.2 for right picture.
 Arbitrarily flip picture right/left.

» Arbitrarily convert picture horizontally with steering angle
accommodated (0.002 per pixel shift).

 Arbitrarily convert picture vertically.
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« Arbitrarily added shadows.
« Arbitrarily changing picture splendor (lighter or more obscure).

It is helpful to prepare the recuperating mobility condition by using the left
and right photos. When dealing with difficult bends, the level interpretation is
useful.

3.2 Hyperparameters Optimization

The network is built using the Colab paradigm from Google. Google Colab
uses it to carry out an autonomous test from beginning to end. In general, the
Google Colab model is preserved. Inconsistent use of the deep convolutional
network can explain supervised image distribution or relapse problems. As a
result, altering the preparatory images to portray the greatest result is the main
focus. In any event, essential adjustments have been made to avoid over-
fitting and to include impartiality in order to construct the prediction
accurately in order to obtain the best result. Additionally, the model has been
updated to include the associated acclimation.

« To make gradients easier to work with and avoid saturation, the lambda
layer is accustomed to standardising input images.

« To prevent over-fitting, an additional dropout layer is added after the
convolution layers.

« In order to ensure linearity, ReLU was then run for actuation capacity.

The network is prepared for greater precision using the Adam Optimiser at a
1 x 10-5 learning rate, epsilon 0.0001, and 32 sets of mini-batches. All data
sources are standardised into [1,—1], and Xavier Initialiser has been used to
initialise network demands. The loss function has been evaluated using mean
squared errors in order to achieve the accuracy of the guidance plot forecast
for each image.

4. SYSTEM IMPLEMENTATION

Setting up the development environment is the first step in implementing an
intelligent computer vision-based environmental monitoring and people
detection system using Google Colab. This entails obtaining the dataset,
turning on GPU acceleration for speedier computations, and loading
necessary libraries like TensorFlow, OpenCV, and NumPy. Using programs
like OIDv4, the dataset may be created by obtaining pertinent picture classes
like "Person” or "Vehicle." To guarantee an effective learning process,
images are pre-processed by shrinking to uniform dimensions, normalising
their pixel values, and dividing them into training, validation, and testing sets.
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A Faster R-CNN architecture, which integrates object categorisation, region
proposal, and feature extraction, is used to construct the model. The
foundation for feature extraction from input photos is a pre-trained VGG16
network. By creating bounding boxes and fine-tuning their coordinates, the
Region Proposal Network (RPN) finds possible object areas. The
classification layer further processes the RPN's outputs to forecast precise
bounding box positions and name items that are discovered. A Double Deep
Q-Learning Network (DDQN) is used to optimise the robot's activities in the
surveillance environment, guaranteeing flexibility to changing situations and
improving the system's decision-making.

Lastly, the system is trained using reinforcement learning methods for the
DDQN and tagged pictures for the Faster R-CNN. The Faster R-CNN is
trained with mean squared error for bounding box regression and categorical
cross-entropy for classification. As the DDQN agent engages with its
surroundings, it minimises exploration and maximises cumulative rewards,
thereby enhancing its performance. The accuracy and efficacy of the system
are assessed using unseen data after training. The end result is a strong
surveillance system that can identify and categorise people or things in real
time, opening the door for security and environmental monitoring
applications.

5. SYSTEM RESULTS

The system's performance across important metrics shows promise,
demonstrating its capacity to make decisions and conduct surveillance in real
time. The system may function well in dynamic contexts where quick
detection and reaction are crucial because to its processing speed of 5-10
frames per second (FPS). This performance is the outcome of using Google
Colab's GPU acceleration and optimisation algorithms. Faster R-CNN's
integration with the DDQN significantly improves the system's
responsiveness by enabling it to make prompt judgements to adjust to
changing circumstances in addition to properly detecting objects. This is
especially helpful for jobs involving human identification and autonomous
navigation.

The system's excellent success rate of 90-95% in terms of detection accuracy
demonstrates its dependability in recognising barriers and people. A key
factor in lowering false positives and negatives is the application of the Faster
R-CNN model, which was trained on the Open Image V5 dataset with
substantial data augmentation. Robustness is guaranteed even in congested
situations because to the capacity to categorise several item types and
improve bounding box predictions. The outcomes confirm that the technology
is appropriate for high-precision applications including environmental
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surveillance and security monitoring.

A 5-fold cross-validation approach was used to further validate the system'’s
output. Five equal subsets of the dataset were created, four of which were
utilised for training and the fifth as a test set. With only a slight variation, the
average detection accuracy across the folds showed that the algorithm
performs effectively when applied to unknown data. The 5-fold validation
results table for total stopping distance, braking distance, and detection
accuracy is shown in Table 1.

Table 1: Performance Result Validation

Fold||Detection Accuracy ||Avg Braking Distance |Avg Total Stopping Distance
(%) (meters) (meters)
1 93.2 6.5 8.7
2 ]|92.8 6.3 8.5
3 ||94.0 6.7 9.0
4 |91.9 6.4 8.6
5 193.7 6.6 8.8
Avg (|93.1 6.5 8.7

The consistency and dependability of the system are validated in Table 1. The
system's performance in a variety of situations is validated by the detection
accuracy, which stays over 91% throughout all folds, and the low fluctuation
in the braking and total stopping lengths. This comprehensive assessment
guarantees that the system can be implemented successfully in practical
situations.

6. CONCLUSION

To sum up, this study effectively illustrates the creation and deployment of an
intelligent autonomous mobile robot system that combines the Double Deep
Q-Learning Network (DDQN) for decision-making with Faster R-CNN for
object identification. Utilising these cutting-edge techniques, the system
achieves fast reaction times and excellent detection accuracy (90-95%),
allowing for dependable real-time navigation and obstacle avoidance. Eight
vision sensors are integrated to provide thorough environmental awareness,
and strong preprocessing and data augmentation methods enhance model
18
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performance under demanding and changing circumstances. Additionally, the
system's adaptability to stochastic mobility conditions confirms that it is
suitable for use in environmental surveillance and autonomous navigation.

The 5-fold cross-validation findings show that the system is reliable and
generalisable, with safe braking and stopping distances and consistent
detection accuracy across a range of test circumstances. These results
demonstrate how well the model can manage a variety of real-world scenarios
while maintaining efficiency and safety. The study lays the groundwork for
future investigations into enhancing system durability, scalability, and
deployment in increasingly complex situations in addition to highlighting the
possibilities of deep learning and reinforcement learning in autonomous
systems. This study advances intelligent autonomous systems for useful, real-
world security, surveillance, and navigation applications.

REFERENCES

Alam, M., Kwon, K. C., Abbass, M. Y., Imtiaz, S. M., & Kim, N. (2020).
Trajectory-based air-writing recognition using deep neural network
and depth sensor. Sensors, 20(2), 376.

Bin-lIssa, R., Das, M., Rahman, M. S., Barua, M., Rhaman, M. K., Ripon, K.
S. N, & Alam, M. G. R. (2021). Double deep Q-learning and Faster
R-CNN-based autonomous vehicle navigation and obstacle avoidance
in dynamic environment. Sensors, 21(4), 1468. https://doi.org/
10.3390/s21041468

Blum, P., Crowley, P., & Lykotrafitis, G. (2022). Vision-based navigation
and obstacle avoidance via deep reinforcement learning.

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and
mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99—
110.

Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014). Scalable object
detection using deep neural networks. In Proceedings of the CVPR
(pp. 24-27). Columbus, OH, USA.

Gyagenda, N., Hatilima, J. V., Roth, H., & Zhmud, V. (2022). A review of
GNSS-independent  UAV navigation techniques. Robotics and
Autonomous Systems, 104069.

Hasselt, H. V. (2010). Double Q-learning. In Proceedings of the Advances in
Neural Information Processing Systems (pp. 2613-2621). VVancouver,
BC, Canada.

19



Global Online Journal of Academic Research (GOJAR), Vol. 4, No. 2, August 2025

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, 1., Pont-Tuset, J.,
Kamali, S., Popov, S., Malloci, M., Duerig, T., & Ferrari, V. (2020).
The Open Images Dataset V4. International Journal of Computer
Vision, 128(7), 1956-1981.

Li, H. (2023). Mobile robot navigation based on deep reinforcement learning:
A brief review. Journal of Physics: Conference Series, 2649, 012027.
https://doi.org/10.1088/1742-6596/2649/1/012027

Liao, J., Liu, T., Tang, X., Mu, X., Huang, B., & Cao, D. (2020). Decision-
making strategy on highway for autonomous vehicles using deep
reinforcement learning. IEEE  Access, 8, 177804-177814.
https://doi.org/10.1109/ACCESS.2020.3018117

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., et al. (2015). Human-level control through deep reinforcement
learning. Nature, 518, 529-533. https://doi.org/10.1038/nature14236

Nageshrao, S., Tseng, H. E., & Filev, D. (2019). Autonomous highway
mobility using deep reinforcement learning. In Proceedings of the
2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC) (pp. 2326-2331). Bari, Italy.

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-
time object detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(6),
1137-1149.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., et al. (2016). Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 484-489. https://doi.org/10.1038/
nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., et al. (2017). Mastering the game of Go without human
knowledge. Nature, 550, 354-359. https://doi.org/10.1038/
nature24270

Sutton, R. S., & Barto, A. G. (2011). Reinforcement learning: An
introduction. MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction
(2nd ed.). MIT Press.

Szegedy, C., Reed, S., Erhan, D., Anguelov, D., & loffe, S. (2014). Scalable,
high-quality object detection. arXiv preprint, arXiv:1412.1441.

20



Global Online Journal of Academic Research (GOJAR), Vol. 4, No. 2, August 2025

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning
with double Q-learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (pp. 2326-2331). Phoenix, AZ,
USA.

Zhang, Y., Chai, Z., & Lykotrafitis, G. (2021). Deep reinforcement learning
with a particle dynamics environment applied to emergency
evacuation of a room with obstacles. Physica A: Statistical Mechanics
and its Applications, 571, 125845. https://doi.org/10.1016/
J.physa.2021.125845

Author Information: Osita Miracle Nwakeze is
affiliated with Department of Computer Science,
Chukwuemeka Odumegwu Ojukwu University, Uli,
Anambra State, Nigeria. Email: ma.nwakeze@coou.edu.

ng

Ogochukwu Okeke is of the Department of Computer
Science, Chukwuemeka Odumegwu Ojukwu University,
Uli, Anambra State, Nigeria. Email: ogoookeke@yahoo.
com

Ike Mgbeafulike is affiliated with Department of
Computer Science, Chukwuemeka Odumegwu Ojukwu
University, Uli, Anambra State, Nigeria. Email:
ij.mgbeafulike@coou.edu.ng

m CITING THIS ARTICLE m

APA

X » X

Nwakeze, O. M., Okeke, O., & Mgbeafulike, 1. (2025). Development
of An Intelligent Mobile Robot System for Object and Obstacle
Detection. Global Online Journal of Academic Research (GOJAR),
4(2), 7-21. https://klamidas.com/gojar-v4n2-2025-01/.

MLA

Nwakeze, Osita Miracle, Okeke, Ogochukwu, & Mgbeafulike, Ike.
“Development of An Intelligent Mobile Robot System for Object
and Obstacle Detection”. Global Online Journal of Academic
Research (GOJAR), wvol. 4, no. 2, 2025 pp. 7-21.
https://klamidas.com/gojar-v4n2-2025-01/.

21



